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Foreword

This book is based on the lecture notes of several courses on the differential geometry of
curves and surfaces that I gave during the last eight years. These courses were addressed
to different audience and, as such, the lecture notes have been revised again and again
and once almost entirely rewritten. I tried to expose the material in a modern language,
without loosing the contact with the intuition. There is a common believe that mathe-
matics is eternal and it never changes, unlike other sciences. I think that nothing could
be farther from the truth. Mathematics does change continuously, either for the need of
more rigor, either for the need of more structure. The mathematics we are doing and
teaching today is essentially different (and not only as language!) from the mathemat-
ics of the nineteenth century. This variation also applies, of course, to the teaching of
mathematics.

There are several reason why we need to renew the textbooks from time to time:

• the mathematics evolves and we need to introduce new results and notions;

• some parts of specific courses become obsolete and should be removed;

• the curriculum as a whole evolves and we have to keep pace with the developments
of the neighboring fields;

• some courses move from the undergraduate level to the graduate level or (more
often) the other way around and we have to modify the contents and the language
accordingly.

These are only some of the reasons I decided to write this book.
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The material included is fairly classical. I preferred to discuss in more details the
foundations rather than introduce more and more topics. In particular, unlike most of
books of this kind, I decided not to discuss at all problems of global differential geom-
etry. I believe it is not very useful to discuss such topics, if there is not enough room to
give them all the attention they deserve. Also, the Levi-Civita parallelism and the covari-
ant differentiation are not discussed, because I think they would feel a lot better in the
course of Riemannian geometry. The notion of differentiable manifold is not introduced
but it is only one step away. In fact, I decided to adapt the language of the course in such
a way to qualify for a prerequisite for a course in smooth manifolds.

Is not easy to be original when you teach something that have been taught again and
again for more than two centuries and, on the other hand, should we be always original
at any cost?! As such, it goes without saying that this book owes much to many excellent
classical or more modern textbooks. All of them are mentioned in the bibliography. I
have to mention, however, the books of Gray, do Carmo and Fedenko.

I have to confess that I am not a self-educated person (not entirely, anyway), and my
ideas regarding differential geometry have been influenced by my teachers (the late Prof.
Marian Ţarină and Prof. Dorin Andrica), as well by the colleagues with whom I had the
pleasure to work and to share the ideas, Prof. Pavel Enghiş, Csaba Varga, Cornel Pintea,
Daniel Văcăreţu and Liana Ţopan.

This book would have never existed without my students and their enthusiasm (or
lack of enthusiasm) determined many changes during the years.

A book is not something that you leave at the office and this one was no exception
and it would never have been finished without the infinite patience of my wife who
tolerated the (undeterministic) chaos created by books and manuscripts.

Cluj-Napoca, April 2005.
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Curves





CHAPTER 1

Space curves

1.1 Introduction

Intuitively, the curves are just deformations of straight lines. They can be thought of,
therefore, as “one-dimensional” objects. We are familiar with some of them already from
elementary mathematics, since, obviously, the graphs of functions can be considered as
curves, from this point of view. On the other hand, clearly, usually the curves are not
graphs of functions (well, at least not globally); it is enough to think of a conical section
(for instance an ellipse or a circle, in particular). Thus, in general we cannot represent
a curve by an equation of the form y = f (x), as it would be the case for a graph. On
the other hand, we can represent a conical section also by an implicit equation of the
form f (x, y) = 0, where, in this particular case, of course, as it is known, f is a second
degree polynomial in x and y. Finally, we can represent the coordinates of each point
of the curve as functions of one parameter. As we shall see, this is, usually, the most
convenient way to represent, locally, an arbitrary curve.

An important issue that has to be dealt with is related to the smoothness of the func-
tions used to describe a curve. Of course, we are interested to apply the tools of dif-
ferential calculus. We shall assume, therefore, that all the functions are at least once
continuous differentiable and, if higher order derivatives are involved, we shall assume,
without stating it in clear, that all the derivatives exists and are continuous. We shall use
for the functions which are satisfying these conditions the generic term “smooth”. Apart
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from the computational aspects, there are other, deeper reasons for considering functions
at least once continuously differentiable. Suppose, for instance, that a curve is described
by a set of equations of the form x = f (t),

y = g(t)
.

Now, it can be shown that if the functions f and g are only continuous, the curve can
fill an entire square (or the entire plane). The first example of such an anomalous
curve (which, obviously, contradicts the common sense image of a curve as an one-
dimensional object) has been constructed by the Italian mathematician Giuseppe Peano,
at the end of the XIX-th century. Moreover, this strange phenomenon does not disappear
not even if the functions f and g are differentiable, but not continuously differentiable. In
the figure 1.1 we indicate an iterative process that defines a square-filling (Peano) curve.
The curve itself is the limit of the curves obtained by this iterative process. It is possible,
actually, to describe analytically this curve (i.e. we can find an expression for each iter-
ation), but, as these “curves” are not the subject of our investigation, we prefer to let the
reader satisfy the curiosity by himself. We have to say, however, that the functions we
use to describe a curve do not have to be, necessarily, continuous differentiable to avoid
aforementioned anomalies. What it is required is a little bit less, namely the functions
have to be of bounded variation. It is a well-known fact that the continuous differentiable
functions do verify this condition and, moreover, as we already emphasized, they also
endow us with the necessary computational tools, which are not available for arbitrary
functions with bounded variation.

1.2 Parameterized curves (paths)

Let I be an interval on the real axis R. We shall not assume always that the interval
is open. Sometimes it is even important that the interval be closed. In particular, the
interval can be unbounded and can coincide with the entire real axis.

Definition 1.2.1. A Ck (k > 0) parameterized curve ( or path) in the Euclidean space R3

is a Ck mapping
r : I → R3 : t → (x(t), y(t), z(t)). (1.2.1)

A parameterized curve is, typically, denoted by (I, r), (I, r = r(t)) or, when the interval
is implicit, just r = r(t). We note that, in fact, a path is Ck iff the (real valued) functions
x, y, z are Ck. If the interval is not open, we shall assume, first of all, that the functions
we are considering are of class Ck in the interior of the interval and all the derivatives, up
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(a) First iteration (b) Second iteration

(c) Third iteration (d) Fourth iteration

Figure 1.1: The Peano’s curve (first four iterations)

to the k-th order, have a finite lateral (left, or right) limit at the extremities of the interval,
if these extremities belong to the interval.

The path is called compact, half-open or open, if the interval I is, respectively, com-
pact, half-open or open.

If the interval I is bounded from below, from above or from both parts, then the
imagine of any extremity of I is called an endpoint of the path. If, in particular, the
curve is compact and the two endpoints coincide, the path is called closed. An alternative
denomination used for a closed path is that of a loop.

Occasionally (for instance in the theory of the line integral) we might need to con-
sider paths which are of class Ck at all the points of an interval, with the exception of a
finite number of points. The following definition will make this more precise.
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Definition 1.2.2. We shall say that a compact parameterized curve r : [a, b] → R3 is
piecewise Ck if there exists a finite subdivision (a = a0, a1, . . . , an = b) of the interval
[a, b] such that the restriction of r to each compact interval [ai−1, ai] is of class Ck, where
i ∈ {1, . . . , n}.

Remark. It is not difficult to show that a parameterized curve r : [a, b]→ R3 is piecewise
Ck iff the following conditions are simultaneously fulfilled:

(i) The set
S =

{
t ∈ [a, b] | f (k) does not exist

}
is finite.

(ii) f (k) is continuous on [a, b] \ S .

(iii) f (k) has a finite left and right lateral limit at each point of S .

Hereafter we shall suppose, all the time, that the order of smoothness k is high
enough and we will not mention it any longer (with some exceptions, however), us-
ing the generic term of smooth parameterized curve (meaning, thus, at least C1 and, in
any particular case, if kth order derivatives are involved, at least Ck).

The image r(I) ⊂ R3 of the interval I through the mapping (1.2.1) is termed the
support of the path (I, r).

If r(t0) = a, we shall say that the parameterized curve passes through the point
a for t = t0. Sometimes, for short, we shall refer to this point as the point t0 of the
parameterized curve.

Examples

1. Let r0 ∈ R
3 be an arbitrary point, and a ∈ R3 a vector, a , 0, while I = R. The

parameterized curve R → R3, t → r0 + ta is called a straight line. Its support is
the straight line passing through r0 (for t = 0) and having the direction given by
the vector a.

2. I = R, r(t) = r0 + t3a. The support of this path is the same straight line.

3. I = R, r(t) = (a cos t, a sin t, bt), a, b ∈ R. The support of this parameterized curve
is called a circular cylindrical helix (see figure 1.2).

4. I = [0, 2π], r(t) = (cos t, sin t, 0). The support of the path is the unit circle, lying
in the xOy-plane, having the center at the origin of the coordinates.
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5. I = [0, 2π], r(t) = (cos 2t, sin 2t, 0). The support is the same from the previous
example.

6. I = R, r(t) = (t2, t3, 0). This curve has a cusp at the point t = 0.

Definition 1.2.3. A parameterized curve (1.2.1) is called regular for t = t0 if r′(t0) , 0
and regular if it is regular for each t ∈ I.

As we shall see a little bit later, the notion of regularity at a point of a parameterized
curve is related to the existence of a well defined tangent to the curve in that point.

The curves from the previous example are regular, with the exception of those from
the points 2 and 6, which are not regular from t = 0.

Remark. The fact that the same support can correspond both to a regular and a nonreg-
ular parameterized curve suggests that the absence of the regularity at a point doesn’t
necessarily mean that the corresponding point of the support has some geometric pe-
culiarities. It’s only that the regularity guarantees the absence of these peculiarities.
Indeed, if we look, again, at the curves 2 and 6 from the previous example, we notice
immediately that, although they are, both, nonregular for t = 0, only for the second curve
this analytic singularity implies a geometric singularity (a cusp), while for the first one
the support is just a straight line, without any special points.

To each path corresponds a subset of R3, its support. Nevertheless, as the examples 1
and 2 show, different parameterized curves may have the same support. A parameterized
curve can be thought of as a subset of R3, with a parameterization.1 The support of a
parameterized curve corresponds to our intuitive image of a curve as a one dimensional
geometrical object. As we shall see later, the support of a parameterized curve may have
self-intersections or cusps, which, for many reasons, are not desirable in applications.
The regularity conditions rules out the cusps, but not the self-intersections. To eliminate
them, we have to impose some further conditions.

We have seen that different parameterized curves may have the same support. In the
end, it is the support, as a set of points, we are interested in. It is, therefore, necessary to
identify some relations between the parameterized curves that define the same support.
For reasons that will become clear later, for the moment, at least, we are interested only
in regular curves. Therefore, for instance, passing from a parameterized representation
of the support to another should not change the regularity of the curve.

Definition 1.2.4. Let (I, r = r(t)), (J, ρ = ρ(s)) two parameterized curves. A diffeomor-
phism λ : I → J : t → s = λ(t) such that r = ρ ◦ λ, i.e. r(t) ≡ ρ(λ(t)), is called a

1Of course, the information is redundant, since the parametric representation defines the support.



18 Chapter 1. Space curves

Figure 1.2: The circular helix

parameter change or a reparameterization. Two parameterized curves for which there
is a parameter change are called equivalent, while the points t and s = λ(t) are called
correspondent.

Remarks. 1) The relation just defined is an equivalence relation on the set of all parame-
terized curves.

2) The reparameterization has a simple kinematical interpretation. If we interpret
the parametric equations of the path as being the equations of motion of a particle, then
the support is just the trajectory, while the vector r′(t) is the velocity of the particle. The
effect of a reparameterization is the modification of the speed with which the trajectory
is traversed. Also, if λ′(t) < 0, then the trajectory is traversed in the opposite sense. Note
that the two velocity vectors of equivalent parameterized curves in correspondent points
have the same direction. They may have different lengths (the speed) and sense.

Example. The parameterized curves from the examples 1 and 2 are not equivalent, al-
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though, as mentioned, they have the same support.

Remark. Sometimes, the equivalence classes determined by the relation defined before
between parameterized curves are called curves. We shall not follow this line here,
because we would like the curves to be objects slightly more general that just supports
of parameterized curves. In particular, as we shall see in a moment, usually the curves
cannot be represented globally through the same parametric equations. It is enough to
think about the circle. One of the most common parametric representation of the circle
is x = cos θ,

y = sin θ
.

Now, if we let the parameter vary only in the interval (0, 2π), then one of the points of
the circle is not represented. Of course, we can extend the interval, but then the same
point corresponds to more than a value of the parameter, which is, again, not acceptable.

Among all parameterized curves equivalent to a given parameterized curve, there is
one which has a special theoretical meaning and which simplifies many proofs in the
theory of curve, although, in most cases, it is very difficult to find it analytically and,
thus, its practical value is limited.

Definition 1.2.5. We shall say that a parameterized curve is naturally parameterized if
‖r′(s)‖ = 1 for any s ∈ I. Usually, the natural parameter is denoted by s.

Remark. One can see immediately that any smooth, naturally parameterized curve (I, r =
r(s)) is regular, since, clearly, r′(s) cannot vanish, as its norm is nowhere vanishing.

It is by no means obvious that for any parameterized curve there is another one,
equivalent to it and naturally parameterized. To construct such a curve, we need first
another notion.

The arc length of a path (I, r = r(t)) between the points t1 and t2 is the number2

lt1,t2 =

∣∣∣∣∣∣
∫ t2

t1
‖r′(t)‖dt

∣∣∣∣∣∣ .
Remark. There is a good motivation for defining in this way the length of an arc. We
can consider an arbitrary division t1 = a0 < a1 < · · · < an = t2 of the interval [t1, t2] and
examine the polygonal line γn = r(a0)r(a1) · · · r(an). The length of this polygonal line is
the sum of the lengths of its segments. It can be shown that if the parameterized curve

2Although the integrand is positive we did not assume that t1 < t2, therefore the integral might be
negative and the absolute value is necessary, if we want to obtain something positive.
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(I, r) is “good enough” (for instance at least once continuously differentiable), then the
limit of length of the polygonal line γn, when the norm of the division goes to zero, exists
and it is equal to the arc length of the path. It is to be mentioned, also, that the definition
of the arc length makes sense also for piecewise smooth curves, because in this case the
tangent vector has only a finite number of discontinuity points and, therefore, its norm
is integrable.

We are going to show that the arc lengths of two equivalent paths between corre-
spondents points are equal, therefore the arc length is, in a way, a characteristic of the
support3.

Indeed, let r(t) = ρ(λ(t)), then r′(t) = λ′(t)ρ′(λ(t)). Therefore,∣∣∣∣∣∣
∫ t2

t1
‖r′(t)‖dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t2

t1
‖ρ′(λ(t))‖ · |λ′|dt

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣∣∣
∫ t2

t1
‖ρ′(λ)‖ λ′(t)dt︸ ︷︷ ︸

dλ

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ λ2

λ1

‖ρ′(λ)‖dλ

∣∣∣∣∣∣ .
For naturally parameterized curves, (I, r = r(s)),

ls1,s2 = |s2 − s1|.

In particular, if 0 ∈ I (which can always be assumed, since the translation is a diffeomor-
phism), then l0,s = |s|, i.e., up to sign, the natural parameter is the arc length.

Proposition 1. For any regular parameterized curve there is a naturally parameterized
curve equivalent to it.

Proof. Let (I, r = r(t)) be a regular parameterized curve, t0 ∈ I, and

λ : I → R, t →
∫ t

t0
‖r′(τ)‖dτ.

The function λ is smooth and strictly increasing, since λ′(t) = ‖r′(t)‖ > 0. Therefore, its
image will be an open interval J, while the function λ : I → J will be a diffeomorphism.
The parameterized curve (J, ρ(s) = r(λ−1(s)) is equivalent to (I, r) and it is naturally
parameterized, since ρ′(s) = r′(λ−1(s))(λ−1)′(s), while

(λ−1)′(s) =
1

λ′(λ−1(s))
=

1
‖r′(λ−1(s))‖

3In a way, because we may represent the same set of points as support of another parameterized curve,
which is not equivalent to the initial one. The new path might have a different arc length between the same
points of the support.
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and, hence,
‖ρ′(s)‖ = ‖r′(λ−1(s))‖ · |(λ−1)′(s)| = 1.

�

Remark. In the proof of the previous proposition we used, in an essential way, the fact
that all the points of the curve are regular. On an interval on which the curve has singular
points, there is no naturally parameterized curve equivalent to it.

Example. For the circular helix 
x = a cos t
y = a sin t
z = bt,

we get, through a parameter change,

s(t) =
∫ t

0
‖r′(τ)‖dτ =

∫ t

0
‖{−a sin τ, a cos τ, b}‖dτ =

√
a2 + b2,

therefore,

t =
s

√
a2 + b2

.

Thus, the natural parameterization of the helix is given by the equations
x = a cos s√

a2+b2

y = a sin s√
a2+b2

z = b s√
a2+b2

.

Exercise 1.2.1. Find a natural parameterization of the curve

x = et cos t, , y = et sin t, z = et.

Exercise 1.2.2. Show that the parameter along the curve

x =
s
2

cos
(
ln

s
2

)
, y =

s
2

sin
(
ln

s
2

)
, z =

s
√

2

is a natural parameter.
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Remark. It should be noticed that, usually, the natural parameter along a parameterized
curve cannot be expressed in finite terms (i.e. using only elementary functions) with
respect to the parameter along the curve. This is, actually, impossible even for very
simple curves, such that the ellipse x = a cos t

y = b sin t,

with a , b, for which the arc length can be expressed only in terms of elliptic functions
(this is, actually, the origin of their name!). Therefore, although the natural parameter is
very important for theoretical consideration and for performing the proofs, as the reader
will have more than once the opportunity to see in this book, for concrete examples of
parameterized curves we will hardly ever use it.

1.3 The definition of the curve

As we mentioned before, we can imagine, intuitively, a curve as being just a deformation
of a straight line, without thinking, necessary, at an analytical representation. We expect
the curve to have a well defined tangent at each point. In particular, this condition should
rule out both cusps and self intersections.

Definition 1.3.1. A subset M ⊂ R3 is called a regular curve (or a 1-dimensional smooth
submanifold of R3) if, for each point a ∈ M there is a regular parameterized curve (I, r),
whose support, r(I), is an open neighbourhood in M of the point a (i.e. is a set of the
form M ∩ U, where U is an open neighborhood of a in R3), while the map r : I → r(I)
is a homeomorphism, with respect to the topology of subspace of r(I). A parameterized
curve with these properties is called a local parameterization of the curve M around the
point a. If for a curve M there is a local parameterization (I, r) which is global, i.e. for
which r(I) = M, the curve is called simple.

Remark. In some books in the definition it is required that the map r : I → r(I) be
smooth, which is not completely rigorous, as r(I) is not an open subset of R3. What is
meant, is, however, exactly the same, i.e. the map r : I → R3 is smooth.

Examples. 1. Any straight line in R3 is a simple curve, because it has a global para-
meterization, given by a function of the form r : R→ R3, r(t) = a + b · t, where a
and b are constant vectors, b , 0.

2. The circular helix is a simple regular curve, with the global parameterization r :
R→ R3, given by r(t) = (a cos t, b sin t, bt).
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3. A circle in R3 is a curve, but it is not simple, since no open interval can be home-
omorphic to the circle, which is a compact subset of R3.

Thus, a regular curve is just a subset of R3 obtained “gluing together smoothly”
supports of parameterized curves. If we look carefully at the definition of the curve, we
see that not any regular parameterized curve can be used as a local parameterization of
a curve. For an arbitrary parameterized curve (I, r), the map r : I → R3 is not injective
and, thus, it cannot be a local parameterization. Let us, also, mention that even if the
function is injective, r : I → r(I) might fail to be a homeomorphism (even if the map is
continuous and bijective, the inverse might not be continuous).

If, for instance, we consider the parameterized curve (I, r), with I = R and r : R →
R3,

r(t) = (cos t, sin t, 0),

then the support of this parameterized curve is the unit circle in the coordinate plane
xOy, centred at the origin. We should not conclude, however, that the circle is a simple
curve, since r is not a homeomorphism onto (in fact, it is not even injective, because it
is periodic).

Now let us assume that (I, r = r(t)) and (J, ρ = ρ(τ)) are two local parameterizations
of a regular curve M around the same point a ∈ M. Then, as one could expect, the two
parameterized curves are equivalent, if we restrict the definition intervals such that they
have the same support. More specifically, the following theorem holds:

Theorem 1.3.1. Let M ⊂ R3 be a regular curve and (I, r = r(t)), (J, ρ = ρ(τ)) – two
local parameterizations of M such that W ≡ r(I)∩ρ(J) , ∅. Then (r−1(W), r|r−1(W)) and
(ρ−1(W), ρ|ρ−1(W)) are equivalent parameterized curves.

Proof.
(I, r(t) = (x̃(t), ỹ(t), z̃(t))

and
(J, ρ(τ) = (x(τ), y(τ), z(τ))

be two local parameterizations of the curve M. To simplify the notations, we shall
assume, from the very beginning, that r(I) = ρ(J). Clearly, the generality is not reduced
by this assumption. We claim that the map λ : I → J, λ = ρ−1 ◦ r, is a diffeomorphism,
providing, thus, a parameter change between the two parameterized curves.

λ is, clearly, a homeomorphism, as a composition of the homeomorphisms

r : I → r(I)
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and
ρ−1 : ρ(J)→ J.

Moreover r = ρ ◦ λ. Therefore, all we have to prove is that the maps λ and λ−1 are both
smooth. One might be tempted, at this point, to write λ as

λ = ρ−1 ◦ r

and conclude that λ is smooth, as composition of two smooth functions. While this rep-
resentation is legitimate, as both r and ρ are homeomorphism onto, ρ−1 is not a differen-
tiable function and, for the time being, at least, it doesn’t make sense to speak about its
differentiability, as its domain of definition is not an open subset of the ambient Euclid-
ean space. We will prove, instead that, locally, ρ−1 is the restriction of a differentiable
mapping, defined, this time, on an open subset of R3.

Since the notion of differentiability is a local notion, it is enough to prove that λ
is smooth in a neighbourhood of each point of the interval I. This could be achieved,
for instance, by representing λ, locally, as a composition of smooth functions. Let t0 ∈
I, τ0 = λ(t0). Due to the regularity of the map ρ, we have ρ′(τ0) , 0. We can assume,
without restricting the generality, that the first component of this vector is different from
zero, i.e. x′(τ0) , 0. From the inverse function theorem, applied to the function x,
there is an inverse function τ = f (x), defined and smooth in an open neighbourhood
V ⊂ R of the point x0 = x(τ0). Then, in the open neighbourhood ρ( f (V)) of the point
(x(τ0), y(τ0), z(τ0)) from M we will have ρ−1(x, y, z) = f (x), which means that, in fact,
we have

ρ−1
∣∣∣
ρ( f (V)) = f ◦ pr1|ρ( f (V)) ,

where pr1 : R3 → R is the projection of R3 on the first factor.
With this local expression of ρ−1 in hand, we can write λ on the open neighbourhood

r−1(ρ( f (V))) of t0 as

λ|r−1(ρ( f (V))) = ρ
−1

∣∣∣
ρ( f (V)) ◦ r|r−1(ρ( f (V))) = f ◦ pr1|ρ( f (V)) ◦ r|r−1(ρ( f (V))) .

As the functions f , pr1 and r are, all of them, smooth on the indicated domains, it follows
that λ is smooth on the open neighbourhood r−1(ρ( f (V))) of t0. As t0 was arbitrary, λ is
smooth on the entire I. The smoothness of λ−1 is proven in the same way, changing the
roles of r and ρ. �

It follows from the definition that any regular curve is, locally, the support of a
parameterized curve. Globally, this is not true, unless the curve is simple. Also, in
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general, the support of an arbitrary parameterized curve is not a regular curve. Take, for
instance, the lemniscate of Bernoulli (R, r(t) = (x(t), y(t), z(t))), where

x(t) = t(1+t2)
1+t4

y(t) = t(1−t2)
1+t4

z = 0

.

r is continuous, even bijective, but the inverse is not continuous. In fact, the support has
a self intersection, because limt→−∞ r = limt→∞ r = r(0) (see the figure 1.3). However,
we can always restrict the domain of definition of a parameterized curve such that the
support of the restriction is a regular curve.

Figure 1.3: The Bernoulli’s lemniscate

Theorem 1.3.2. Let (I, r = r(t)) a regular parameterized curve. Then each point t0 ∈ I
has a neighbourhood W ⊂ I such that r(W) is a simple regular curve.

Proof. The regularity of r at each point means, in particular, that r′(t0) , 0. Without
restricting the generality, we may assume that x′(t0) , 0. Let us consider the mapping
ψ : I × R2 → R3, given by

ψ(t, u, v) = r(t) + (0, u, v),

where (u, v) ∈ R2. ψ is, clearly, smooth and its Jacobi matrix at the point (t0, 0, 0) is
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given by

J(ψ)(t0, 0, 0) =

x′(t0) 0 0
y′(t0) 1 0
z′(t0) 0 1


Its determinant is

det J(ψ)(t0, 0, 0) = x′(t0),

therefore ψ is a local diffeomorphism around the point (t0, 0, 0). Accordingly, there exist
open neighborhoods U ⊂ R3 of (t0, 0, 0) and V ⊂ R3 of ψ(t0, 0, 0) such that ψ|V is a
diffeomorphism from U to V . Let us denote by ϕ : V → U its inverse (which, of course,
is, equally, a diffeomorphism from V to U, this time). If we put

W := {t ∈ I : (t, 0, 0) ∈ U} ,

then, clearly, W is an open neighborhood of t0 in I such that

ϕ(V ∩ r(W)) = ϕ(ψ(W × {(0, 0)}) = W × {(0, 0)}.

�

Remark. The previous theorem plays a very important conceptual role. It just tells us
that any local property of regular parameterized curves is valid, also, for regular curves,
if it is invariant under parameter changes, without the assumptions of the parameterized
curves being homeomorphisms onto. Of course, all the precautions should be taken
when we investigate the global properties of regular curves.

1.4 Analytical representations of curves

1.4.1 Plane curves

A regular curve M ⊂ R3 is called plane if it is contained into a plane π. We shall,
usually, assume that the plane π coincides with the coordinate plane xOy and we shall
use, therefore, only the coordinates x and y to describe such curves.

Parametric representation. We choose an arbitrary local parameterization (I, r(t) =
(x(t), y(t), z(t))) of the curve. Then the support r(I) of this local parameterization is an
open subset of the curve. For a global parameterization of a simple curve, r(I) is the
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entire curve. Thus, any point a of the curve has an open neighbourhood which is the
support of the parameterized curve x = x(t)

y = y(t)
. (1.4.1)

The equations (1.4.1) are called the parametric equations of the curve in the neighbour-
hood of the point a. Usually, unless the curve is simple, we cannot use the same set of
equations to describe the points of an entire curve.

Explicit representation. Let f : I → R be a smooth function, defined on an open
interval from the real axis. Then its graph

C = {(x, f (x)) | x ∈ I}, (1.4.2)

is a simple curve, which has the global parameterizationx = t
y = f (t)

. (1.4.3)

The equation
y = f (x) (1.4.4)

is called the explicit equation of the curve (1.4.2).
In the literature for the explicit representation of a curve it is, also, used the term non-

parametric form, which we do not find particularly appealing since, in fact, an explicit
representation can be thought of as a particular case of parameter representation (the
parameter being the coordinate x).

Implicit representation. Let F : D → R be a smooth function, defined on a domain
D ⊂ R2, and let

C = {(x, y) ∈ D | F(x, y) = 0} (1.4.5)

be the 0-level set of the function F. Generally speaking, C is not a regular curve (we can
only say that it is a closed subset of the plane). Nevertheless, if at the point (x0, y0) ∈ C
the vector grad F = {∂xF, ∂yF} is non vanishing, for instance ∂yF(x0, y0) , 0, then, by
the implicit functions theorem there exist:

• an open neighborhood U of the point (x0, y0) in R2;
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• a smooth function y = f (x), defined on an open neighborhood I ⊂ R of the point
x0,

such that
C ∩ U = {(x, f (x)|x ∈ I}.

If grad F , 0 in all the points of C, then C is a regular curve (although, in general, not a
simple one).

Figure 1.4: The bisectors of the coordinate axes

Examples. 1. F : R2 → R, F(x, y) = x2 + y2 − 1. Let

(x0, y0) ∈ C = {(x, y) ∈ R2 | x2 + y2 − 1 = 0}.

Then we have
grad F(x0, y0) = {2x0, 2y0}.

Obviously, since x2
0 + y2

0 = 1, the vector grad F cannot vanish on C and, thus, C is
a curve (the unit circle, centred at the origin).

2. F : R2 → R, F(x, y) = x2 − y2. C is not a curve in this case (the gradient is
vanishing at the origin). In fact, the set C has a self intersection at the origin (C
is just the union of the two bissectors of the coordinate axes, see figure 1.4). It
might not be obvious why we encounter problems in the neighbourhood of the
origin for this “curve”. The point is that there is no neighbourhood of the origin
(on C), homeomorphic to an open interval on the real axis. An neighbourhood of
the origin of C is the intersection of an open neighbourhood of the origin in the
plane and the set C. Now, if we restrict the neighbourhood of the origin in the
plane, its intersection with the set C will be a cross. If we remove the origin from
the cross, the remaining set will have four connected components. On the other
hand, suppose there is a homeomorphism f from the cross to an open interval
from the real axis. If we remove from the interval the image of the origin through
the homeomorphism f , we will get, clearly, only two connected components, or it
can be proved that the number of connected components resulted by removing a
point is homeomorphisms-invariant.

Remark. It should be clear that the condition of nonsingularity of the gradient of F
is only a sufficient condition for the equation F(x, y) = 0 to represent a curve. If the
gradient of F is zero at a point, we cannot claim that the equation represent a curve in



1.4. Analytical representations of curves 29

the neighborhood of that point, but we cannot claim the opposite, either. Consider, as a
trivial example, the equation

F(x, y) ≡ (x − y)2 = 0.

Then we have
grad F(x, y) = 2{x − y,−(x − y)}

and if we denote
C = {(x, y) ∈ R2 | F(x, y) = 0},

then grad F = 0 at all the points of C. But, clearly, C is a curve (it is easy to see that it is
the first bissector of the coordinate axes, i.e. a straight line).

1.4.2 Space curves

Parametric representation. As in the case of plane curves, with a local parameteriza-
tion 

x = x(t)
y = y(t)
z = z(t)

(1.4.6)

we can represent either the entire curve, or only a neighbourhood of one of its points.

Explicit representation. If f , g : I → R are two smooth functions, defined on an open
interval from the real axis, then the set

C = {(x, f (x), g(x)) ∈ R3 | x ∈ I} (1.4.7)

is a simple curve, with a global parameterization given by
x = t
y = f (t)
z = g(t)

. (1.4.8)

The equations y = f (x)
z = g(x)

(1.4.9)

are called the explicit equations of the curve. Let us note that, in fact, each equation of
the system (1.4.9) is the equation of a cylindrical surface, with the generators parallel
to one of the coordinate axis. Therefore, representing explicitly a curve actually means
representing it as an intersection of two cylindrical surfaces, with the two families of
generators having orthogonal directions.
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Implicit representation. Let F,G : D→ R, defined on a domain D ⊂ R3. We consider
the set

C = {(x, y, z) ∈ D | F(x, y, z) = 0, G(x, y, z) = 0},

in other words, the solutions’ set for the systemF(x, y, z) = 0,
G(x, y, z) = 0.

(1.4.10)

In the general case, the set C is not a regular curve. Nevertheless, if at the point a =
(x0, y0, z0) ∈ C the rank of the Jacobi matrix(

∂xF ∂yF ∂zF
∂xG ∂yG ∂zG

)
(1.4.11)

is equal to two, then there is an open neighborhood U ⊂ D of the point (x0, y0, z0) such
that C ∩ U — the set of solutions of the system (1.4.10) in U — is a curve. Indeed,
suppose, for instance, that

det
(
∂yF(a) ∂zF(a)
∂yG(a) ∂zG(a)

)
, 0.

Then, from the implicit functions theorem, there is an open neighborhood U ⊂ D such
that the set C ∩ U can be written as

C ∩ U = {(x, f (x), g(x))|x ∈ W},

where W is an open neighborhood in R of the point x0, while y = f (x), z = g(x) are
smooth functions, defined on W. Clearly, C ∩ U is a simple curve, while the pair
(W, r(t) = (t, f (t), g(t)) is a global parameterization of it.

If the rank of the matrix (1.4.11) is equal to two everywhere, then C is a curve
(although, generally, not a simple one).

Example (The Viviani’s temple). An important example of space curve given by implicit
equations is the so-called temple of Viviani4. This curve is obtained as the intersection
between the sphere with the center at the origin and radius 2a and the circular cylinder

4Vincenzo Viviani (1622–1703) was a Italian mathematician and architect, who was in contact with
Galileo Galilei in the last years of the great scientist, and who liked to recommend himself as “Galileo’s
last student”.



1.4. Analytical representations of curves 31

with radius a and axis parallel to the z-axis, situated at a distance a from this axis. In
other words, the equations of the Viviani’s temple arex2 + y2 + z2 = 4a2,

(x − a)2 + y2 = a2.

It is instructive to make some computations for the case of the Viviani’s temple. As we
shall see, it is not, globally, a curve. We will have to eliminate a point to get, indeed, a
regular curve. In fact, the shape of Viviani’s temple is easy to understand. The curve has
a shape which is similar to a Bernoulli’s lemniscate, lying on the surface of a sphere. So,
let F(x, y, z) = x2 + y2 + z2 − 4a2,

G(x, y, z) = (x − a)2 + y2 − a2.

Then the equations of the curve readsF(x, y, z) = 0,
G(x, y, z) = 0.

We have, now, (
F′x F′y F′z
G′x G′y G′z

)
=

(
2x 2y 2z

2(x − a) 2y 0

)
= 2

(
x y z

x − a y 0

)
.

To get a singular point, the following system of equations has to be fulfilled
y = 0
yz = 0
(x − a)z = 0

.

Clearly, the only solution of the system that verifies, also, the equations of the curve
is x = 2a, y = z = 0. Thus, the Viviani’s temple (see figure 1.5) is a regular curve
everywhere except the point which has these coordinates. It is not difficult to show that
Viviani’s temple is, in fact, the support of the parameterized curve

r(t) = (a(1 + cos t), a sin t, 2a sin
t
2

),

with t ∈ (−2π, 2π). If we compute r′(t) we get

r′(t) = {−a sin t, a cos t, a cos
t
2
},
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Figure 1.5: Viviani’s temple

which means that this parameterized curve is regular. In particular, the existence of
this regular parametric representation of the Viviani’s temple shows that the point of
coordinates x = 2a, y = z = 0 is, in fact, a point of self-intersection, rather then a
singular point.

1.5 The tangent and the normal plane. The normal at a plane
curve

Definition 1.5.1. For a parameterized curve r = r(t) the vector r′(t0) is called the tangent
vector or the velocity vector of the curve at the point t0. If the point t0 is regular, then the
straight line passing through r(t0) and having the direction of the vector r′(t0) is called
the tangent to the curve at the point r(t0) (or at the point t0).

The vectorial equation of the tangent line reads, thus:

R(τ) = r(t0) + τr′(t0). (1.5.1)
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Example. The cylindrical helix has the parameterization

r(t) = (a cos t, a sin t, bt),

therefore, for a point t0,
r′(t0) = {−a cos t0, a sin t0, b}.

Thus, the equation of the tangent is

R(τ) =(a cos t0 − τa sin t0, a sin t0 + τa cos t0, bt0 + τb) =

=(a(cost0 − τ sin t0), a(sint0 + τ cos t0), b(t0 + τ)).

Proposition 1.5.1. The tangent vectors of two equivalent parameterized curves at cor-
responding points are colinear, while the tangent lines coincide.

Proof. Let (I, r = r(t)) and (J, ρ = ρ(s)) the two equivalent parameterized curves and
λ : I → J the parameter change, i.e. r = ρ(λ(t)). Then, according to the chain rule,

r′(t) = ρ′(λ(t)) · λ′(t),

with λ′(t) , 0. �

Remarks. 1. Clearly, r′ and ρ′ have the same sense when λ′ > 0 (the parameter
change does not modify the sense in which the support of the parameterized curve
is traversed) and they have opposite sense when λ′ < 0.

2. Since the parameter change modifies the tangent vector, it doesn’t make sense to
define the tangent vector at a point of a regular curve, through a local parameter-
ization. Nevertheless, as we have seen, only the orientation and the length of the
tangent vector can vary, but not the direction. Thus, it makes sense to speak about
the tangent line at a point of a regular curve, defined through any local parameter-
ization of the curve around that point.

We can use a more “geometric” way to define the tangent to a parameterized curve.
Let r(t0 + ∆t) be a point of the curve close to the point r(t0). Then, according to the
Taylor’s formula,

r(t0 + ∆t) = r(t0) + ∆t · r′(t0) + ∆t · ε, (1.5.2)

with lim
∆t→0
ε = 0. We consider an arbitrary straight line π, passing through r(t0) and

having the direction given by the unit vector m. Let

d(∆t) def
= d((r(t0 + ∆t), π).
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Theorem 1.5.1. The straight line π is the tangent line to the parameterized curve r = r(t)
at the point t0 iff

lim
∆t→0

d(∆t)
|∆t|

= 0. (1.5.3)

Proof. From the Taylor’s formula (1.5.2), we have

∆r ≡ r(t0 + ∆t) − r(t0) = ∆t · r′(t0) + ∆t · ε.

The distance d(∆t) is equal to

‖∆r ×m‖ = |∆t|‖r′(t0) ×m + ε ×m‖.

Thus,

lim
∆t→0

d(∆t)
|∆t|

= lim
∆t→0
‖r′(t0) ×m + ε ×m︸︷︷︸

→0

‖ = ‖r′(t0) ×m‖.

Now, if the straight line π is the tangent line at t0, then the vectors r′(t0) and m are
colinear, therefore r′(t0) ×m = 0.

Conversely, if the condition (1.5.3) is fulfilled, then ‖r′(t0)×m‖ = 0, therefore either
r′(t0) = 0 (which cannot happen, since the parameterized curve is regular), either the
vectors r′(t0) and m are colinear, i.e. π is the tangent line at t0. �

Remark. The condition (1.5.3) is expressed by saying that the tangent line and the curve
have a first order contact (or tangency contact). Another way of interpreting this formula
is that the tangent line is the limit position of the straight line determined by the chosen
point and a neighbouring point on the curve, when the neighbouring point is approaching
indefinitely to the given one.

Hereafter, if not specified otherwise, all the parameterized curves considered will be
regular.

Definition 1.5.2. Let r = r(t) be a parameterized curve and t0 ∈ I. The normal plane
at the point r(t0) of the curve r = r(t) is the plane which passes through r(t0) and it is
perpendicular to the tangent line to the curve at r(t0).

If r = r(t) is a plane parameterized curve (i.e. its support is contained into a plane,
which we will assume to be identical to the coordinate plane xOy), then the normal to
the curve at the point r(t0) will be the straight line through r(t0), which is perpendicular
to the tangent line to the curve at the point r(t0).

Remark. Because it makes sense to define the tangent line at a point of a regular curve,
by using an arbitrary local parameterization around that point, the same is true for the
normal plane (or the normal line, in the case of plane curves ).
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The vectorial equation of the normal plane (line) follows immediately from the def-
inition:

(R − r(t0)) · r′(t0) = 0. (1.5.4)

1.5.1 The equations of the tangent line and normal plane (line) for different
representations of curves

Parametric representation

If we start from the vectorial equation (1.5.1) of the tangent line and project it on the
coordinate axes, we obtain the parametric equations of the tangent line, i.e., for space
curves, 

X(τ) = x(t0) + τx′(t0),
Y(τ) = y(t0) + τy′(t0),
Z(τ) = z(t0) + τz′(t0),

(1.5.5)

and, for plane curves, X(τ) = x(t0) + τx′(t0),
Y(τ) = y(t0) + τy′(t0).

(1.5.6)

If we eliminate the parameter τ, we get the canonical equations:

X − x
x′
=

Y − y
y′
=

Z − z
z′

, (1.5.7)

for space curves, respectively
X − x

x′
=

Y − y
y′

, (1.5.8)

for plane curves.
As for the equation of the normal plane (line), we can obtain it from (1.5.4), express-

ing it as
{X − x,Y − y,Z − z} · {x′, y′, z′} = 0,

for space curves and
{X − x,Y − y} · {x′, y′} = 0,

for plane curves. Expanding the scalar products, we get:

(X − x)x′ + (Y − y)y′ + (Z − z)z′ = 0, (1.5.9)

for the equation of the normal plane to a space curve and, for the normal line to a plane
curve,

(X − x)x′ + (Y − y)y′ = 0. (1.5.10)
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Explicit representation

If we have a space curve given by the equationsy = f (x)
z = g(x)

,

then we can construct a parameterization
x = t
y = f (t)
z = g(t).

For the derivatives we obtain immediately the expressions
x′ = 1
y′ = f ′

z = g′,

which, when substituted into the equations (1.5.7), give

X − x =
Y − f (x)

f ′(x)
=

Z − g(x)
g′(x)

, (1.5.11)

while for the equation of the normal plane, after substituting the derivatives into the
equation (1.5.9), we obtain

X − x + (Y − f (x)) f ′(x) + (Z − g(x))g′(x) = 0. (1.5.12)

For a plane curve given explicitly
y = f (x),

we have the parametric representationx = t
y = f (t),

and, thus, the equation of the tangent line is

X − x =
Y − f (x)

f ′(x)
(1.5.13)
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or, in a more familiar form,

Y − f (x) = f ′(x)(X − x), (1.5.14)

while for the normal we get

X − x + (Y − f (x)) f ′(x) = 0 (1.5.15)

ore
Y − f (x) = −

1
f ′(x)

(X − x). (1.5.16)

Implicit representation

Let us consider a curve given by the implicit equationsF(x, y) = 0
G(x, y) = 0.

(1.5.17)

Let us suppose that, at a point (x0, y0, z0)

det
(
F′y F′z
G′y G′z

)
, 0

Then, as we saw before, around this point, the curve can be represented asy = f (x)
z = g(x),

(1.5.18)

i.e. the system (1.5.17) can be written asF(x, f (x), g(x)) = 0
G(x, f (x), g(x)) = 0.

By computing the derivatives with respect to x of F and G, we get the systemF′x + f ′(x)F′y + g′(x)F′z = 0
G′x + f ′(x)G′y + g′(x)G′z = 0,

therefore  f ′F′y + g′F′z = −F′x
f ′G′y + g′G′z = −G′x.
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From this system, one can obtain f ′ and g′, through the Cramer method:

∆ =

∣∣∣∣∣∣F′y F′z
G′y G′z

∣∣∣∣∣∣ not
=

D(F,G)
D(y, z)

hyp
, 0,

∆ f ′ =

∣∣∣∣∣∣−F′x F′z
−G′x G′z

∣∣∣∣∣∣ =
∣∣∣∣∣∣F′z F′x
G′z G′x

∣∣∣∣∣∣ not
=

D(F,G)
D(z, x)

∆g′ =

∣∣∣∣∣∣F′y −F′x
G′y −G′x

∣∣∣∣∣∣ =
∣∣∣∣∣∣F′x F′y
G′x G′y

∣∣∣∣∣∣ not
=

D(F,G)
D(x, y)

,

therefore 
f ′ =

D(F,G)
D(z,x)
D(F,G)
D(y,z)

g′ =
D(F,G)
D(x,y)
D(F,G)
D(y,z)

(1.5.19)

As we saw before, for the curve (1.5.18) the equations of the tangent are

X − x0 =
Y − f (x0)

f ′(x0)
=

Z − g(x0)
g′(x0)

or, using (1.5.19),

X − x0 =
Y − f (x0)

D(F,G)
D(z,x)
D(F,G)
D(y,z)

=
Z − g(x0)

D(F,G)
D(x,y)
D(F,G)
D(y,z)

,

from where, having in mind that f (x0) = y0 and g(x0) = z0, we have

X − x0
D(F,G)
D(y,z)

=
Y − y0
D(F,G)
D(z,x)

=
Z − z0
D(F,G)
D(x,y)

.

For a plane curve
F(x, y) = 0,

if at the point (x0, y0) there is fulfilled the condition F′y , 0, then, from the implicit
functions theorem, locally, y = f (x), hence the equation of the curve can be written as

F(x, f (x)) = 0.

By differentiating this relation with respect to x, one obtains

F′x + f ′F′y = 0 =⇒ f ′ = −
F′x
F′y
.
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Thus, from the equation of the tangent:

Y − y0 = f ′(x0)(X − x0),

we deduce

Y − y0 = −
F′x
F′y

(X − x0)

or
(X − x0)F′x + (Y − y0)F′y = 0,

while for the normal we obtain the equation

(X − x0)F′y − (Y − y0)F′x = 0.

1.6 The osculating plane

Definition 1.6.1. A parameterized curve r = r(t) is called biregular (or in general posi-
tion) at the point t0 if the vectors r′(t0) and r′′(t0) are not colinear, i.e.

r′(t0) × r′′(t0) , 0.

The parameterized curve is called biregular if it is biregular at each point5.

Remark. It is not difficult to check that the notion of a biregular point is independent
of the parameterization: if a point is biregular for a given parameterized curve, then its
corresponding point through any parameter change is, also, a biregular point.

Definition 1.6.2. Let (I, r) be a parameterized curve and t0 ∈ I – a biregular point. The
osculating plane of the curve at r(t0) is the plane through r(t0), parallel to the vectors
r′(t0) and r′′(t0), i.e. the equation of the plane is

(R − r(t0), r′(t0), r′′(t0)) = 0, (1.6.1)

or, expanding the mixed product,∣∣∣∣∣∣∣∣∣
X − x0 Y − y0 Z − z0

x′ y′ z′

x′′ y′′ z′′

∣∣∣∣∣∣∣∣∣ = 0. (1.6.2)

5A biregular curve is also called in some books a complete curve. We find this term a little bit misleading,
since this terms has, usually, other meaning in the global theory of curves (and, especially, surfaces).
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Theorem 1.6.1. The osculating planes to two equivalent parameterized curves at cor-
responding biregular points coincides.

Proof. Let (I, r = r(t)) and (J, ρ = ρ(s)) be two equivalent parameterized curves and
λ : I → J – the parameter change. Then

r(t) = ρ(λ(t)),

r′(t) = ρ′(λ(t)) · λ′(t),

r′′(t) = ρ′′(λ(t)) · (λ′(t))2 + ρ′(λ(t)) · λ′′(t).

Since λ′(t) , 0, from these relations it follows that the system of vectors {r′(t), r′′(t)}
and {ρ′(λ(t)), ρ′′(λ(t))} are equivalent, i.e. they generate the same vector subspace R3,
hence the osculating planes to the two parameterized curves at the corresponding points
t0 and λ(t0) have the same directing subspace, therefore, they are parallel. As they have
a common point (since r(t0) = ρ(λ(t0)), they have to coincide. �

Remark. From the previous theorem it follows that the notion of an osculating plane
makes sense also for regular curves.

As in the case of the tangent line, there is a more geometric way of defining the
osculating plane which is, at the same time, more general, since it can be applied also
for the case of the points which are not biregular.

Let r(t0) şi r(t0 + ∆t) two neighboring points on a parameterized curve, with r(t0)
biregular. We consider a plane α, of normal versor e, passing through r(t0). and denote
d(∆t) = d(r(t0 + ∆t), α).

Theorem 1.6.2. α is the osculating plane to the parameterized curve r = r(t) at the
biregular point r(t0) iff

lim
∆t→0

d(∆t)
|∆t|2

= 0,

i.e. the curve and the plane have a second order contact.

Proof. From the Taylor formula we have

r(t0 + ∆t) = r(t0) + ∆t · r′(t0) +
1
2

(∆t)2 · r′′(t0) + (∆t)2 · ε,

with lim
∆t→0
ε = 0.

On the other hand,

d(∆t) = |e · (r(t0 + ∆t) − r(t0))| =

= |(e · r′(t0)) · ∆t +
1
2

(e · r′′(t0)) · (∆t)2 + (e · ε) · (∆t)2|.
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Thus,

lim
∆t→0

d(∆t)
|∆t|2

= lim
∆t→0

∣∣∣∣∣∣∣∣e · r
′(t0)
∆t

+
1
2
· (e · r′′(t0)) + e · ε︸︷︷︸

→0

∣∣∣∣∣∣∣∣ =
= lim
∆t→0

∣∣∣∣∣e · r′(t0)
∆t

+
1
2
· (e · r′′(t0))

∣∣∣∣∣ .
If lim
∆t→0

d(∆t)
|∆t|2 = 0, then e · r′(t0) = 0 and e · r′′(t0) = 0, i.e. e ‖ r′(t0)× r′′(t0), meaning that

α is the osculating plane.
The converse is obvious. �

Remarks. (i) The previous theorem justifies the name of the osculating plane. Actu-
ally, the name (coined by Johann Bernoulli), comes from the Latin verb osculare,
which means to kiss end emphasizes the fact that, among all the planes that are
passing through a given point of a curve, the osculating plane has the higher order
(“the closer”) contact.

(ii) Defining the osculating plane through the contact, one can define the notion of an
osculating plane also for the points which are not biregular, but in that case any
plane passing through the tangent is an osculating plane, in the sense that it has a
second order contact with the curve. Saying that the osculating plane at a biregular
point is the only plane which has at that point a second order contact with the curve
is the same with saying that the osculating plane is the limit position of a plane
determined by the considered point and two neighbouring points when this ones
are approaching indefinitely to the given one. Also, on can define the osculating
plane at biregular point of a parameterized curve as being the limit position of a
plane passing through the tangent at the given point and a neighboring point from
the curve, when this point is approaching indefinitely the given one.

A natural question that one may ask is what happens with the osculating plane in
the particular case of a plane parameterized curve. The answer is given by the following
proposition, whose prove is left to the reader:

Proposition 1.6.1. If a biregular parameterized curve is plane, i.e. its support is con-
tained into a plane π, then the osculating plane to this curve at each point coincides
to the plane of the curve. Conversely, if a given biregular parameterized curve has the
same osculating plane at each point, then the curve is plane and its support is contained
into the osculating plane.
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1.7 The curvature of a curve

Let (I, r = r(t)) be a regular parameterized curve. Let (J, ρ = ρ(s)) be a naturally para-
meterized curve, equivalent to it. Then ‖ρ′(s)‖ = 1, while the vector ρ′′(s) is orthogonal
to ρ′(s)6.

One can show that ρ′′(s) does not depend on the choice of the naturally parameter-
ized curve equivalent to the given curve r = r(t). Indeed, if (J1, ρ1 = ρ1(s̃)) is another
equivalent naturally parameterized curve with the parameter change s̃ = λ(s), then, from
the condition

‖ρ′(s)‖ = ‖ρ′1(λ(s))‖ = 1

we get |λ′(s)| = 1 for any s ∈ J. Thus, λ′ = ±1 and, therefore,
s̃ = ±s + s0, where s0 is a constant. It follows that

ρ′′(s) = ρ′′1(s̃) (λ′(s))2︸  ︷︷  ︸
=1

+ρ′1 · λ
′′(s)︸︷︷︸
=0

= ρ′′1(s̃).

Definition 1.7.1. The vector k = ρ′′(s(t)) is called the curvature vector of the parame-
terized curve r = r(t) at the point t, while its norm, k(t) = ‖ρ′′(s(t))‖ – the curvature of
the parameterized curve at the point t.

We shall express now the curvature vector k(t) as a function of r(t) and its derivatives.
We choose as natural parameter the arc length of the curve. Then we have

r(t) = ρ(s(t))⇒

r′(t) = ρ′(s(t)) · s′(t)

r′′(t) = ρ′′(s(t)) · (s′(t))2 + ρ′(s(t)) · s′′(t),

where s′(t) = ‖r′(t)‖, s′′(t) = ‖r′(t)‖′ =
d
dt

(√
r′(t) · r′(t)

)
=

r′(t) · r′′(t)
‖r′(t)‖

. Thus, we have

k(t) = ρ′′(s(t)) =
r′′

‖r′‖2
−

r′ · r′′

‖r′‖4
· r′. (1.7.1)

Now, since the vectors ρ′ and ρ′′ are orthogonal, while ρ′ has unit length, we have

k(t) = ‖k(t)‖ = ‖ρ′′‖ = ‖ρ′ × ρ′′‖.

6Indeed, since ρ′ is a unit vector, we have ρ′2 = 1. Differentiating this relation, we obtain that ρ′ ·ρ′′ = 0,
which expresses the fact that the two vectors are orthogonal.
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Substituting ρ′ =
r′

‖ρ′‖
, and ρ′′ by the formula (1.7.1) we obtain

k(t) =
‖r′ × r′′‖
‖r′‖3

. (1.7.2)

Remarks. 1. From the formula (1.7.2) it follows that a parameterized curve r = r(t)
is biregular at a point t0 iff k(t0) , 0.

2. Since for equivalent parameterized curve the naturally parameterized curve to each
of them are equivalent between them, the notion of curvature makes sense also for
regular curves.

Examples. 1. For the straight line r = r0 + ta the curvature vector (and, therefore,
also the curvature) is identically zero.

2. For the circle S 1
R = {(x, y, z) ∈ R3|x2 + y2 = R2, z = 0} we choose the parameteri-

zation 
x = R cos t
y = R sin t
z = 0

0 < t < 2π.

Then
r′(t) = {−R sin t,R cos t, 0}, r′′(t) = {−R cos t,R sin t, 0}

and, thus, ‖r′(t)‖ = R, r′(t) · r′′(t) = 0. Therefore, for the curvature vector we get

k(t) =
{
−

1
R

cos t,−
1
R

sin t, 0
}
= −

1
R
{x, y, z}, k(t) =

1
R
.

Remarks. 1. The computation we just made explains why the inverse of the curvature
is called the curvature radius of the curve.

2. We saw that the curvature of a straight line is identically zero. The converse is
also true, in some sense, as the following proposition shows.

Proposition 1.7.1. If the curvature of a regular parameterized curve is identically zero,
then the support of the curve lies on a straight line.

Proof. Suppose, for the very beginning, that we are dealing with a naturally parameter-
ized curve (I, ρ = ρ(s)). From the hypothesis, ρ′′(s) = 0, therefore ρ′(s) = a = const,
ρ(s) = ρ0 + sa, i.e. the support ρ(I) lies on a straight line. As two equivalent pa-
rameterized curves have the same support, the result still holds also for non-naturally
parameterized curves. �
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Remark. Be careful, the fact that a parameterized curve has zero curvature simply means
that the support of the curve lies on a straight line, but it doesn’t necessarily means that
the parameterized curve is (the restriction of) an affine map from R to R3, nor that it is
equivalent to such a particular parameterized curve. We can consider, as we did before,
the parameterized curve r : R → R3, r = r0 + at3, where a is a constant, nonvanishing,
vector from R3. Then we have, immediately, r′(t) = 2at2 and r′′(t) = 3at, which means
that the velocity and the acceleration of the curve are parallel, hence the curve has zero
curvature but, as we also saw earlier, this parameterized curve is not equivalent to an
affine parameterized curve.

1.7.1 The geometrical meaning of curvature

Let us consider a naturally parameterized curve (I, r = r(s)). We denote by ∆ϕ(s) the
measure of the angle between the versors r(s) and r(s + ∆s). Then

‖r(s + ∆s) − r(s)‖ = 2
∣∣∣∣∣sin
∆ϕ(s)

2

∣∣∣∣∣ .
Therefore,

k(s) = ‖r′′(s)‖ =
∥∥∥∥∥ lim
∆s→0

r(s + ∆s) − r(s)
∆s

∥∥∥∥∥ = lim
∆s→0

2
∣∣∣∣sin ∆ϕ(s)

2

∣∣∣∣
|∆s|

=

= lim
∆s→0

∣∣∣∣∣∆ϕ(s)
∆s

∣∣∣∣∣ ·
∣∣∣∣sin ∆ϕ(s)

2

∣∣∣∣∣∣∣∣∆ϕ(s)
2

∣∣∣∣ = lim
∆s→0

∣∣∣∣∣∆ϕ(s)
∆s

∣∣∣∣∣ = ∣∣∣∣∣dϕds

∣∣∣∣∣ .
Thus, if we have in mind that ∆ϕ(s) is the measure of the angle between the tangents to
the curve at s and s + ∆s, the last formula gives us:

Proposition 1.7.2. The curvature of a curve is the speed of rotation of the tangent line
to the curve, when the tangency point is moving along the curve with unit speed.

1.8 The Frenet frame (the moving frame) of a parameterized
curve

At each point of the support of a biregular parameterized curve (I, r = r(t)) one can
construct a frame of the space R3. The idea is that, if we want to investigate the local
properties of a parameterized curve around a given point of the curve, that it might be
easier to do that if we don’t use the standard coordinate system of R3, but a coordinate
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system with the origin at the given point of the curve, while the coordinate axes have
some connection with the local properties of the curve. Such a coordinate system was
constructed, independently, at the middle of the XIX-th century, by the French mathe-
maticians Frenet and Serret.

Definition 1.8.1. The Frenet frame (or the moving frame) of a biregular parameterized
curve (I, r = r(t)) at the point t0 ∈ I is an orthonormal frame of the space R3, with
the origin at the point r(t0), the coordinate versors being the vectors {τ(t0), ν(t0),β(t0)},
where:

• τ(t0) is the versor of the tangent to the curve at t0, i.e.

τ(t0) =
r′(t0)
‖r′(t0)‖

.

τ(t0) is also called the unit tangent at the point t0;

• ν(t0) = k(t0)/k(t0) is the versor of the curvature vector:

ν(t0) =
k(t0)
k(t0)

and it is called the unit principal normal at the point t0.

• β(t0) = τ(t0) × ν(t0) it is called the unit binormal at the point t0.

• The axis of direction τ(t0) is, obviously, the tangent to the curve at t0.

• The axis of direction ν(t0) is called the principal normal. In fact, this straight line
is contained into the normal plane (since it is perpendicular on the tangent), but
it is also contained into the osculating plane. Thus, the principal normal is the
normal contained into the osculating plane.

• The axis of direction β(t0) is called the binormal. The binormal is the normal
perpendicular on the osculating plane.

• The plane determined by the vectors {τ(t0), ν(t0} is the osculating plane (O in the
figure 1.8).

• The plane determined by the vectors {ν(t0),β(t0)} is the normal plane (N in the
figure 1.8).
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Figure 1.6: The Frenet frame of a parameterized curve

• The plane determined by the vectors {τ(t0),β(t0)} is called the rectifying plane ,
for reasons that will become clear later (R in the figure 1.8).

For a naturally parameterized curve (J, ρ = ρ(s)), the expressions of the vectors of the
Frenet frame are quite simple:

τ(s) = ρ′(s)

ν(s) =
ρ′′(s)
‖ρ′′(s)‖

β(s) ≡ τ(s) × ν(s) =
ρ′(s) × ρ′′(s)
‖ρ′′(s)‖

. (1.8.1)

For an arbitrary biregular parameterized curve (I, r = r(t)) the situation is a little bit
more complicated. Thus, obviously, from the definition, at an arbitrary point t ∈ I,

τ(t) =
r′(t)
‖r′(t)‖

. (1.8.2)
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Then, having in mind that

k(t) =
r′′(t)
‖r′(t)‖2

−
r′(t) · r′′(t)
‖r′(t)‖4

· r′(t)

and

k(t) =
‖r′(t) × r′′(t)‖
‖r′(t)‖3

,

we get

ν(t) ≡
k(t)
k(t)
=

‖r′(t)‖
‖r′(t) × r′′(t)‖

· r′′(t) −
r′(t) · r′′(t)

‖r′(t)‖ · ‖r′(t) × r′′(t)‖
· r′(t), (1.8.3)

while

β(t) ≡ τ(t) × ν(t) =
r′(t) × r′′(t)
‖r′(t) × r′′(t)‖

. (1.8.4)

Remark. The above computations show that, in practice, for an arbitrary parameterized
curve (I, r = r(t)) it is easier to compute directly τ and β and then compute ν by the
formula

ν = β × τ.

1.8.1 The behaviour of the Frenet frame at a parameter change

A notion defined for parameterized curves makes sense for regular curves iff it is in-
variant at a parameter change, in other words if it doesn’t change when we replace a
parameterized curve by another one, equivalent to it. The Frenet frame is “almost” in-
variant, i.e. we have

Theorem 1.8.1. Let (I, r = r(t)) and ρ = ρ(u) be two equivalent parameterized curves
with the parameter change λ : I → J, u = λ(t). Then, at the corresponding points t
and u = λ(t), their Frenet frame coincide if λ′(t) > 0 . If λ′(t) < 0, then the origins and
the unit principal normals coincide, while the other two pairs of versors have the same
direction, but opposite senses.

Proof. Since r(t) = ρ(λ(t)), the origins of the Frenet frames coincide in any case. As
seen before, the curvature vectors of two equivalent curves coincide and, thus, the same
is true for the unit principal normals. From r′(t) = ρ′(λ(t)) · λ′(t) it follows the coinci-
dence of the Frenet frames for λ′(t) > 0. If λ′(t) < 0, the tangent vectors ρ′(u) and r′(t)
have opposite senses, and the same is true for their versors. From β = τ × ν it follows
that, in this case, the unit binormals also have opposite senses. �
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1.9 Oriented curves. The Frenet frame of an oriented curve

As we saw before, the Frenet frame of a parameterized curve is not invariant at a para-
meter change (well, at least not at any parameter change). Therefore, in order to be able
to use this apparatus also for regular curve, we need to make it invariant. The idea is to
modify a little bit the definition of the regular curve, imposing some further condition on
the local parameterization, to make sure that the parameter changes will not modify the
Frenet frames.

Definition 1.9.1. Two parameterized curves are (I, r = r(t)) and (J, ρ = ρ(u)) are called
positively equivalent if there is a parameter change λ : I → J, u = λ(t), with λ′(t) > 0,
∀t ∈ I.

Definition 1.9.2. An orientation of a regular curve C ⊂ R3 is a family of local parame-
terizations {(Iα, rα = rα(t))}α∈A such that

a) C =
⋃
α∈A

rα(Iα),

b) For any connected component Cb
αβ of the intersection Cαβ = rα(Iα) ∩ rβ(Iβ) with

α, β ∈ A the parameterized curves (Ib
α, rb

α) and (Ib
β , r

b
β) with Ib

α = r−1
α (Cb

αβ), rb
α = rα|Ib

α
,

Ib
β = r−1

β (C0
αβ), rb

β = rβ|Ib
β

are positively equivalent.

Example. For the unit circle S 1 the following parameterizations:

(I1 = (0, 2π), r1(t) = (cos t, sin t, 0))

and
(I2 = (−π, π), r2(t) = (cos t, sin t, 0))

give an orientation of S 1. C12 = r1(I1)∩r2(I2) has two connected components (the upper
and the lower half circles).

Starting with the upper component, C1
12, we have

I1
1 = r−1

1 (C1
12) = (0, π),

I1
2 = r−1

2 (C1
12) = (0, π)

and the parameter change is the identity, λ : (0, π) → (0, π), λ(t) = t, ∀t ∈ (0, π),
therefore the two parameterized curves are, clearly, positively equivalent.
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As for the lower connected component, C2
12, we get

I2
1 = r−1

1 (C2
12) = (π, 2π),

I2
2 = r−1

2 (C2
12) = (−π, 0)

and the parameter change is λ : I2
1 → I2

2 , λ(t) = t − 2π, therefore, since λ′(t) = 1 > 0,
also this time the two local parameterizations are positively equivalent.

Definition 1.9.3. A regular curve C ⊂ R3, with an orientation, is called an oriented
regular curve.

Example. If C is a simple regular curve, it can be turned into an oriented curve by using
an orientation given by any global parameterization (I, r).

Remark. If C is a connected regular curve, it has only two distinct orientations, corre-
sponding to the two possible senses of moving along the curve.

Definition 1.9.4. A local parameterization (I, r) of an oriented regular curve C is called
compatible with the orientation defined by the family {(Iα, rα)}α∈A if on the intersections
r(I) ∩ rα(Iα) the parameterized curves (I, r) and (Iα, rα) are positively equivalent.

I1
1 = r−1

1 (C1
12) = (0, π),

I1
2 = r−1

2 (C1
12) = (0, π)

Remark. For an oriented regular curve C, with the orientation given by the family of
local parameterizations {(Iα, rα)}α∈A, one can define, by using the vectors r′α(t), a sense
on each tangent line, since, passing to another local parameterization rβ(t), the vectors
r′α and r′β have the same direction and the same sense (only their norms may differ).

The orientation itself can be given through the choice of a sense on each tangent
line. Thus, if the direction of the tangent vector at x ∈ C is given by the vector a(x), then
wave to impose the continuity of the map C → R3, x → a(x). For this definition of the
orientation, a local parameterization (I, r) is compatible with the orientation if, for each
point x ∈ C, x = r(t), the vectors a(x) and r′(t) have the same sense.

Definition 1.9.5. The Frenet frame of an oriented biregular curve C at a point x ∈ C
is the Frenet frame of a biregular parameterized curve r = r(t) at t0, where r = r(t)
is a local parameterization of the curve C, compatible with the orientation, such that
r(t0) = x.

Remark. Clearly, this definition does not depend on the choice of the local parameteri-
zation, compatible with the orientation of the curve.
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1.10 The Frenet formulae. The torsion

Let (I, r = r(t)) be a biregular parameterized curve. Then the vectors τ(t), ν(t), β(t) are,
in fact, smooth vector functions with respect to the parameter t. We want to find their
derivatives with respect to t, more precisely, the decomposition of these derivatives with
respect to the vectors {τ, ν,β}. These derivatives show, in fact, the way the vectors of the
Frenet frame vary along the curve. From the definition, we have,

τ =
r′

‖r′‖
=

r′
√

r′2
.

Therefore,

τ′ =
r′′ · ‖r′‖ − r′ · r′·r′′

‖r′‖

‖r′‖2
=

r′′ · ‖r′‖2 − r′(r′ · r′′)
‖r′‖3

=

= ‖r′‖ ·
‖r′ × r′′‖
‖r′‖3︸     ︷︷     ︸

k

 ‖r′‖
‖r′ × r′′‖

· r′′ −
r′ · r′′

‖r′‖ · ‖r′ × r′′‖
· r′︸                                         ︷︷                                         ︸

ν

 .
Thus,

τ′ = ‖r′‖k · ν. (1.10.1)

Further,

β = τ × ν ⇒ β′ = τ′ × +τ × ν′ = k(ν × ν︸︷︷︸
=0

) + τ × ν′ ⇒ β′ = τ × ν′,

hence β′ ⊥ τ. On the other hand,

β · β = 1 ⇒ β′ · β = 0 ⇒ β′ ⊥ β.

Thus, the vector β′ is colinear to the vector ν = β × τ and we can write

β′ = −‖r′‖ · χν,

where χ is a proportionality factor, the meaning of which will be made clear later.
We differentiate now the equality

ν = β × τ.

We have
ν′ = β′ × τ + β × τ′ = −‖r′‖ · χ(ν × τ) + ‖r′‖ · k(β × ν),
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therefore,
ν′ = ‖r′‖(−kτ + χβ). (1.10.2)

We obtained, thus, the equations
τ′(t) = ‖r′‖k(t)ν(t)
ν′(t) = ‖r′‖(−k(t)τ(t) + χ(t)β(t))
β′(t) = −‖r′‖χ(t)ν(t).

(1.10.3)

These equations are called the Frenet formulae for the parameterized curve r = r(t). If
we are dealing win a naturally parameterized curve ρ = ρ(s), then the Frenet equations
are a little bit simpler: 

τ′(t) = k(t)ν(t)
ν′(t) = −k(t)τ(t) + χ(t)β(t)
β′(t) = −χ(t)ν(t).

(1.10.3′)

Definition 1.10.1. The quantity χ(t) is called the torsion (or second curvature) of the
biregular parameterized curve r = r(t) at the point t.

We shall compute first the torsion for a naturally parameterized curve ρ = ρ(s). For
such a curve, the versors of the Frenet frame are given by the expressions:

τ = ρ′

ν = 1
kρ
′′

β = 1
kρ
′ × ρ′′.

From the third Frenet formula, we have:

β′ · ν = −χ(s) · (ν × ν︸︷︷︸
=1

) = −χ(t).

But, on the other hand, from the definition,

β′ =

(
1
k

)′
+

1
k
ρ′′ × ρ′′︸   ︷︷   ︸
=0

+
1
k
ρ′ × ρ′′′,

hence

χ = −β′ · ν = −

(
1
k

)′ (
ρ′ × ρ′′

)
·

1
k
ρ′′︸                    ︷︷                    ︸

=0

−
1
k
(
ρ′ × ρ′′′

)
·

1
k
ρ′′,



52 Chapter 1. Space curves

therefore,

χ =
1
k2

(
ρ′, ρ′′, ρ′′′

)
. (1.10.4)

Now, the following theorem gives us the way to compute the torsion for an arbitrary
(biregular) parameterized curve:

Theorem. If (I, r = r(t)) and (J, ρ = ρ(u)) are two positively equivalent parameterized
curves, with the parameter change λ : I → J, λ′ > 0, then they have the same torsion at
the corresponding points t and u = λ(t).

Proof. Let {τ, ν,β}, respectively {τ1, ν1,β1} be the Frenet frames of the two parameter-
ized curves at the corresponding points t and uλ(t), respectively, and χ and χ1 their –
torsions at these points. Then

β1(λ(t)) = β(t)

ν1(λ(t)) = ν(t),

r′(t) = ρ′(λ(t)) · λ′(t) ⇒ r′(t) =
d
du

(β1(u))λ′(t).

From the last Frenet equation for the curve r, we get

β′(t) · ν(t) = −‖r′(t)‖ · χ(t),

i.e.

χ(t) = −
1

‖r′(t)‖
· β′(t) · ν(t) = −

1
‖ρ′(λ(t))‖ · λ′(t)

· β1
′(λ(t)) · λ′(t) · ν1(λ(t)) =

= −
1

‖ρ′(λ(t))‖
·
(
−‖ρ′(λ(t))‖ · χ1(λ(t))

)
= χ1(λ(t)),

where we used once more the last Frenet equation, but this time for the curve ρ, as well
as the fact that the vector ν1(λ(t)) has unit length. �

Let now ρ = ρ(s) be a naturally parameterized curve, positively equivalent to the
parameterized curve r = r(t), where s = λ(t) is the parameter change. Then r and its
derivatives up to the third order can be expressed as functions of ρ and its derivatives as:

r(t) = ρ(λ(t))

r′(t) = ρ′(λ(t)) · λ′(t)

r′′(t) = ρ′′(λ(t)) · λ′2(t) + ρ′(λ(t)) · λ′′(t)

r′′′(t) = ρ′′′(λ(t)) · λ′3(t) + 3ρ′′(λ(t)) · λ′(t) · λ′′(t) + ρ′(λ(t)) · λ′′′(t),
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therefore the mixed product of the first three derivatives of r reads(
r′(t), r′′(t), r′′′(t)

)
=

(
ρ′(λ(t)) · λ′(t), ρ′′(λ(t)) · λ′2(t) + ρ′(λ(t)) · λ′′(t),

ρ′′′(λ(t)) · λ′3(t) + 3ρ′′(λ(t)) · λ′(t) · λ′′(t) + ρ′(λ(t)) · λ′′′(t)
)
=

= λ′6(t)
(
ρ′(λ(t)), ρ′′(λ(t)), ρ′′′(λ(t))

)
,

all the other mixed products from the right hand side vanishing, because two of the
factors are colinear. Hence(

ρ′(λ(t)), ρ′′(λ(t)), ρ′′′(λ(t))
)
=

1
λ′6(t)

(
r′(t), r′′(t), r′′′(t)

)
.

But, since ρ is naturally parameterized and the two curves are positively equivalent, we
have λ′ = ‖r′‖, therefore the previous formula becomes

(
ρ′, ρ′′, ρ′′′

)
=

(r′, r′′, r′′′)
‖r′‖6

.

Moreover (see (1.7.2)), the curvature can be expressed with respect to the derivatives of
r through the formula

k =
‖r′ × r′′‖
‖r′‖3

,

hence, from the expression of the torsion (1.10.4) and the previous relation, we get

χ(t) =
(r′, r′′, r′′′)
‖r′ × r′′‖2

. (1.10.5)

Exercise 1.10.1. Let ω = χτ + kβ. Show that Frenet’s formulae can be written as
τ′ = ω × τ

ν′ = ω × ν

β′ = ω × β

(1.10.6)

The vector ω is called the Darboux vector.

1.10.1 The geometrical meaning of the torsion

The torsion is, in a way, an analogue of the curvature (this is the reason why in the old-
fashioned books the torsion is called the second curvature). What we mean is that the
torsion can be also interpreted as being the speed of rotation of a straight line, this time
the binormal. In other words, we have



54 Chapter 1. Space curves

Proposition 1.10.1. If (I, r = r(s)) is a naturally parameterized curve and ∆α is the
angle of the osculating planes of the curve at r(s) and r(s + ∆s) (in other words, the
angle of the binormals of the curve at that points), then we have

χ(s) = lim
∆s→0

∆α

∆s

Notice that, this time, unlike the case of the curvature, the torsion is the algebraic
value of the limit, not the absolute value. We have to say, however, that the curvature
of space curve is defined to be positive because one could find no geometrical meaning
of a signed curvature. As we shall see in the sequel, for plane curve we can define a
signed curvature, whose absolute value is the curvature and which will help us to get
some more information about the curve.

As we said before, the torsion is analogue to the curvature. Thus, the curvature is a
measure of the deviation of a curve from a straight line. On the other hand, the torsion
is a measure of the deviation of the curve from a plane curve. More precisely, we have

Theorem 1.10.1. The support of a biregular parameterized curve lies in a plane iff the
torsion of the curve vanishes identically.

Proof. Let (I, r = r(t)) be a biregular parameterized curve such that r(I) ⊂ π, where π is
a plane. Then, obviously, the vectors r′(t) and r′′(t) are parallel to this plane, which, as
we know, is the osculating plane of the curve. Therefore, β(t) = const, hence we have

0 = β′(t) = − ‖r′‖︸︷︷︸
,0

·χ(t) · ν(t)︸︷︷︸
,0

⇒ χ(t) ≡ 0.

Conversely, if χ(t) ≡ 0, then the unit binormal, β(t), is always equal to a constant vector,
β0. But β(t) = r′(t) × r′′(t), therefore the vector r′(t) is always perpendicular to the
constant vector β0. Thus, we have the series of implications

r′(t) · β0 = (r · β0)′ = 0 ⇒ r · β0 = const = r0 · β0 ⇒ (r − r0) × β0 = 0,

i.e. the support of r(I) the curve is contained in a plane perpendicular to the constant
vector β0, and passing through the point r0 . �

1.10.2 Some further applications of the Frenet formulae

We saw that the curvature of a parameterized curve vanishes identically if and only if the
support of the curve lies on a straight line. On the other hand, we know that the curvature
of a circle is constant and equal to the inverse of the radius of the circle. We could expect
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that the converse is also through, in other words that if the curvature of a parameterized
curve is constant, then its support lies on a circle. Unfortunately, this claim is not true.
It is enough to think about the circular cylindrical helix, which has constant curvature
(and, also, constant torsion). We have, however, the weaker result:

Proposition 1.10.2. If (I, r = r(s)) is a naturally parameterized curve with a curvature
k equal to a positive constant k0, while the torsion vanishes identically, then the support
of the curve lies on a circle of radius 1/k0.

Proof. Since the torsion is identically zero, the curve is plane. Let us consider the para-
meterized curve (I, r1 = r1(s)), where

r1 = r +
1
k0
ν. (*)

We differentiate with respect to s and we get, using the second Frenet formula for r,

r
′

1 = r′ +
1
k0
ν′ = τ +

1
k0

(−k0τ) = τ − τ = 0.

Thus, the curve r1 reduces to a point, say r1(s) ≡ c = const. But, from (*), we get

‖r − c‖ =
∥∥∥∥∥ 1

k0
ν · ν

∥∥∥∥∥ = 1
k0
,

which means that any point of the support of the curve r is at a (constant) distance 1/k0
from the fixed point c, i.e. the support r(I) lies on the circle of radius 1/k0, centred at
c. �

Another interesting situation is when the support of the curve lies not in a plane, but
on a sphere. In this case we have

Proposition 1.10.3. If a naturally parameterized curve (I, r = r(s)) has the support on
a sphere centred at the origin and radius equal to a, then its curvature is subject to

k ≥
1
a
.

Proof. The distance from a point of the curve to the origin is equal to ‖r‖, i.e. we have
r2 = a2. Differentiating, we get r · r′ = 0 or r · τ. Differentiating once more, we obtain

r′ · τ + r · τ′ = 0,
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or
1 + r · τ′ = 0 ⇐⇒ 1 + kr · ν = 0 =⇒ kr · ν = −1.

From the properties of the scalar product, we have

|r · ν| ≤ ‖r‖ · ‖ν‖ = ‖r‖ = a,

therefore,

k = |k| =
1
|r · ν|

≥
1

‖r‖ · ‖ν‖
=

1
a
.

�

In the figure ?? we give an example of a curve which lies on a sphere, it is a so-called
spherical helix, because it is both a general helix (see the next section) and a spherical
curve.

Figure 1.7: A spherical helix

1.10.3 General helices. Lancret’s theorem

Definition 1.10.2. A parameterized curve curve (I, r) is called a general helix if its
tangents make a constant angle with a fixed direction in space.
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The following theorem was formulated in 1802 by the French mathematician Paul
Lancret, but the first known proof belongs to another celebrated French mathematician,
known especially for his contributions to mechanics, A. de Saint Venant (1845).

Theorem 1.10.2 (Lancret, 1802). A space curve with the curvature k > 0 is a general
helix if and only if the ratio between its torsion and its curvature is constant.

Proof. Let us assume, to begin with, that the curve is parameterized by the arc length.
To prove the first implication, let us suppose that r is a general helix and let c be the

versor of the fixed direction:

τ · c = cosα0 = const.

By differentiating, we get
τ′ · c = 0,

hence
k · c · ν = 0.

As, by hypothesis, k > 0, it follows that

c · ν = 0,

i.e., at each point of the curve, c ⊥ ν. This means that c is in the rectifying plane and
therefore

β · c = sinα0.

By differentiating the relation ν · c = 0 we get, having in mind that c is constant and
using the second formula of Frenet:

(−kτ + χβ) · c = 0

which leads to
−k · cosα0 + χ · sinα0 = 0,

i.e.
χ

k
= cotα0 = const.

Conversely, let us assume that

χ(s)
k(s)

= c0 = const,
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or
c0 · k − χ = 0.

On the other hand, from the first and the third of the Frenet’s equations, we get,

(c0 · k − χ)ν = c0τ
′ + β′ = 0.

We integrate once and we obtain

c0τ + β = c∗,

where c∗ , 0 is a constant vector.
We define

c :=
c∗

‖c∗‖
=

c0τ + β

‖c0τ + β‖
=

c0τ + β√
1 + c2

0

,

whence
c · τ =

c0√
1 + c2

0

= const ≤ 1.

Hence the vectors c şi τ make a constant angle and the curve is a general helix. �

We end this paragraph by noting, as a historical curiosity, that, although in most of
the books this theorem is credited to Lancret, in fact he (and, with him, Saint-Venant),
only gave one implication, the first one: on a general helix, the ratio between the torsion
and the curvature is constant. The other implication was given and proved later by Joseph
Bertrand (see, for instance, the book of Eisenhart [16]).

1.10.4 Bertrand curves

An interesting problem in the theory of curves is whether it is possible for several curves
to share the same family of tangents, principal normal or binormals. For the tangents,
the answer is easily seen to be negative: the family of tangents uniquely determines the
curve. For the principal normals, the problem, raised by the same Saint-Venant, was
answered by Joseph Bertrand, who discovered that, for an arbitrary curve, the answer is
negative, however, there are special curves for which there might be, also, other curves
with the same family of principal normals. These curves are called Bertrand curves.
Usually, for a Bertrand curve, there is only one curve having the same principal normals.
We will say that the two curves are Bertrand mates, or that they are associated, or
conjugated Bertrand curves. It turns out that if a Bertrand curve has more than one
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Bertrand mate, then it has an infinity and the curve (and all of its mates) is a circular
cylindrical helix.

We shall prove, in what follows, a series of interesting results related to Bertrand
curves, without respecting the historical order. Let r and r∗ be two Bertrand mates. We
assume that the first curve is naturally parameterized. Then the second curve is, in fact,
also dependent on the arc length s of the first and we assume that r∗(s) is the point on
the Bertrand mate having the same principal normal as the first one at s. The two points
are called corresponding. We have the following result:

Theorem 1.10.3 (Schell). The angle of the tangents of two associated Bertrand curves
at corresponding points is constant.

Proof. Clearly, if ν(s) is the versor of the principal normal of the first curve, then we
have

r∗(s) = r(s) + a(s)ν(s). (1.10.7)

As the two curves have the same principal normals, the second curve ought to have the
versor of the principal normal

ν∗(s) = ±ν(s), (1.10.8)

We differentiate the relation (1.10.7) with respect to s and we get

dr∗

ds
=

dr
ds
+ a

dν
ds
+

da
ds

r (1.10.9)

or, using the second Frenet formula,

dr∗

ds
= (1 − ak) τ +

da
ds
ν + aχβ. (1.10.10)

The vector dr∗
ds is tangent to the second curve, therefore it is perpendicular both on ν∗ and

on ν. We deduce, by multiplying both sides of (1.10.10) by ν, that da
ds = 0, i.e. a is a

constant. As such, the relation (1.10.10) turns into

dr∗

ds
= (1 − ak) τ + aχβ. (1.10.11)

We denote by s∗ the arc length of the second curve. Then

τ∗ =
dr∗

ds∗
=

dr∗

ds
ds
ds∗

(1.10.12)

or, using (1.10.11)

τ∗ = (1 − ak)
ds
ds∗
τ + aχ

ds
ds∗
β. (1.10.13)
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Let ω be the angle of the tangents of the two curvs at the corresponding points. Then
this angle is given by

cosω = ττ∗, (1.10.14)

where, of course, τ∗ is the versor of the second curve at the point r∗(s). In terms of ω,
τ∗ and the versor of the binormal of the second curve„ β∗, can be written as

τ∗ = cosωτ + sinωβ, (1.10.15)

β∗ = ε (− sinωτ + cosωβ) , (1.10.16)

where ε = ±1.
We differentiate the relation (1.10.15) with respect to s and we get:

dτ∗

ds
= − sinω

dω
ds
τ + k cosων + cosω

dω
ds
β − χ sinων. (1.10.17)

If we multiply scalarly both sides of the relation (1.10.17) by τ and then by β and use
the fact that, on the ground of the first Frenet formula, dτ∗

ds is colinear to ν∗, and, thsu,
also to ν, we obtain the relations:

sinω
dω
ds
= 0, cosω

dω
ds
= 0, (1.10.18)

i.e. dω
ds = 0, hence ω is constant. �

The following theorem was proved by Joseph Bertrand and it is considered to be the
central result of the entire theory of Bertrand curves.

Theorem 1.10.4 (Bertrand). A curve r is a Bertrand curve if and only if its torsion and
curvature verify a relation of the form

a · k + b · χ = 1, (1.10.19)

with constant a and b.

Proof. Let us assume that r is a Bertrand curve. Comparing the relations (1.10.13) and
(1.10.15), we obtain that

cosω = (1 − ak)
ds
ds∗

, (1.10.20)

sinω = aχ
ds
ds∗

. (1.10.21)
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Dividing side by side these two equalities, we obtain

ctgω =
1 − ak

aχ
(1.10.22)

or
1 − ak = aχ ctgω. (1.10.23)

If we denote
b = a ctgω, (1.10.24)

we obtain the relation (1.10.19).
Let us suppose now, conversely, that the relation (1.10.19) holds. Let r∗ be the curve

given by (1.10.7), where a is the constant from the equation (1.10.19). Differentiating the
relation (1.10.7), we get, as we saw earlier, the relation (1.10.11). As the basis {τ, ν,β}
is orthonormal we conclude from (1.10.11) that(

ds∗

ds

)2

= (1 − ak)2 + a2χ2 (1.10.25)

or, using (1.10.25), (
ds∗

ds

)2

= (a2 + b2)χ2, (1.10.26)

whence
χ

ds
ds∗
= const. (1.10.27)

In the same way follows that

(1 − ak)
ds
ds∗
= const. (1.10.28)

Taking into account these two relations, we differntiate the relation (1.10.13) and we
obtain, by using the first and the third Frenet formulae for the curve r:

dτ∗

ds
=

[
k(1 − ak) − aχ2

] ds
ds∗
ν (1.10.29)

or, using the first Frenet formula for the curve r∗:

k∗ν∗ =
[
k(1 − ak) − aχ2

] ( ds
ds∗

)2

ν, (1.10.30)

whence it follows that ν∗ = ±ν, i.e., indeed, r is a Bertrand curve. �
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Corollary 1.10.1. The circular cylindrical helices, the curves of constant torsion (in
particular the plane curves), and the curves of constant curvature are Bertrand curves.

Remark. For a plane curve, the principal normals are, in fact, the normals, therefore,
as one can see easily, any plane curve has an infinity of Bertrand mates, all of them
congruent (they are, all of them, parallel to the given one).

Corollary 1.10.2. If a Bertrand curve has more than one mate, then it has an infinity
and it is a circular cylindrical helix.

Proof. As we saw from the proof of the theorem of Bertrand, the constant a from the
relation (1.10.19) is the one that identifies the Bertrand mate of our curve. Thus, if a
curve r has more then one Bertrand mate, this means that there are (at least) two distinct
pairs of real numbers (a, b), (a1, b1) such that

a · k + b · χ = 1,

a1 · k + b1 · χ = 1.

Subtracting side by side the two relations, we obtain

(a − a1) · k = (b1 − b) · χ.

At least one of the coefficients (a − a1) and (b1 − b) is different from zero, therefore
the ratio between the curvature and torsion is a constant. This means, via the Lancret’s
theorem, that the curve is a general helix. However, as, say, χ = c · k, with c – constant,
from (1.10.19) follows that

(a + b · c) · k = 1,

which means that k (and, hence, also χ) is a constant, therefore the curve is a circular
cylindrical helix. Clearly, for the case of a cylindrical helix, when both the curvature
and the torsion are constants, we can get an infinity of pairs of real numbers that ver-
ify (1.10.19), so our curve has an infinity of Bertrand mates. They lie on circular cylin-
ders which have the same axis of symmetry with the cylinder associated to the given
curve. �

1.11 The local behaviour of a parameterized curve around a
biregular point

Let (I, r) be a naturally parameterized curve. We shall assume that 0 ∈ I, as an interior
point and M0 ≡ r(0) is a biregular point of the curve. We shall make use of the following
notations: τ0 = τ(0), ν0 = ν(0), β0 = β(0).
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We expand r in a Taylor series around the origin. Up to the third order, the Taylor
expansion is

r(s) = r(0) + sr′(0) +
1
2

s2r′′(0) +
1
6

s3r′′′(0) + o(s3). (1.11.1)

We want to express the derivatives of r as functions of the Frenet vectors τ0, ν0,β0. We
have, obviously, since r is naturally parameterized,

r′(0) = τ0. (1.11.2)

On the other hand, from the definition of the curvature vector, we have

r′′(0) = k(0) = k(0) · ν0. (1.11.3)

Moreover, if we differentiate the relation

r′′(s) = k(s) = k(s) · ν (1.11.4)

we get

r′′′(s) = k′(s)ν + k(s)ν′ = k′(s)ν + k(s)(−k(s)τ + χ(s)β) =

= −k2(s)τ + k′(s)ν + k(s)χ(s)β,
(1.11.5)

where we have made use of the second Frenet equation.
Substituting s = 0 in (1.11.5), we get

r′′′(0) = −k2(0)τ0 + k′(0)ν0 + k(0)χ(0)β0. (1.11.6)

Thus, the relation (1.11.1) becomes

r(s)− r(0) = sτ0 +
1
2

s2k(0)ν0 +
1
6

s3
(
−k2(0)τ0 + k′(0)ν0 + k(0)χ(0)β0

)
+ o(s3) (1.11.7)

or

r(s) − r(0) =
(
s −

1
6

k2(0)s3 + o(s3)
)
τ0 +

(
1
2

k(0)s2 +
1
6

k′(0)s3 + o(s3)
)
ν0+

+

(
1
6

k(0)χ(0)s3 + o(s3)
)
β0.

(1.11.8)

We consider now a coordinate frame with the origin at M0 and having as axes the Frenet
axes. The position vector of a point of the curve with respect to this frame is exactly the
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vector r(s) − r(0) ≡
−−−−→
M0M, where M = r(s). Therefore, projecting (1.11.8) on the axes,

we get 
x(s) = s − 1

6 k2(0)s3 + o(s3)
y(s) = 1

2 k(0)s2 + 1
6 k′(0)s3 + o(s3)

z(s) = 1
6 k(0)χ(0)s3 + o(s3)

. (1.11.9)

It is not at all difficult to see that locally, close enough to 0, we have the following
relations between coordinates, giving, in fact, the equations of the projections of the
curve on the coordinate planes of the Frenet frame:

y = 1
2 k(0)x2,

z = 1
6 k(0)χ(0)x3,

z2 = 2
9
χ2(0)
k(0) y3.

(1.11.10)

Thus, the projection of the curve on the xOy-plane (the osculating plane) is a parabola,
the projection on the xOz-plane (the rectifying plane) is a cubic, while the projection on
the yOz-plane (the normal plane) is a semicubic parabola.

1.12 The contact between a space curve and a plane

We consider a naturally parameterized space curve (I, r). We assume, as we did before,
that 0 is an interior point of the interval I and that the point M0 = r(0) of the curve is
biregular. We consider a planeΠ passing through the point M0. We choose as coordinate
frame the Frenet frame of the curve r at the point M0, R0 = {M0; τ0, ν0,β0}. With respect
to this coordinate frame, he cartesian equation of the plane Π will be of the form

F(x, y, z) ≡ ax + by + cz = 0. (1.12.1)

Now, if x = x(s), y = y(s), z = z(s) are the local equations of the curve with respect to
the Frenet frame (see (1.11.9)), the intersection condition between the the plane and the
curve is F(x(s), y(s), z(s)) = 0, i.e.

a
(
s −

1
6

k2(0)s3 + o(s3)
)
+ b

(
1
2

k(0)s2 +
1
6

k′(0)s3 + o(s3)
)
+ c

(
1
6

k(0)χ(0)s3 + o(s3)
)
= 0

(1.12.2)
or

as +
1
2

bk(0)s2 +
1
6

(
−ak2(0) + bk′(0) + ck(0)χ(0)

)
s3 + o(s3) = 0. (1.12.3)

We have, now, several possibilities,
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(a) The osculating plane (b) The normal plane

(c) The rectifying plane

Figure 1.8: The projection of a space curve on the planes of the Frenet frame
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a) If a , 0 (i.e. the plane does not contain the tangent), that the plane has a contact of
order zero with the curve (intersection, they have a single point in common).

b) If a = 0, then the intersection equation has s = 0 as a double solution, which means
that the curve and the plane have a contact of order 1 (tangency contact). It can be
observed immediately that in this case the plane Π passes through the tangent at the
curve at the point M0 (which is, in fact, the straight line of equations y = 0, z = 0 in
the coordinate frame considered by us).

c) If we want a contact of order at least 2 (osculation contact), then the coefficient of
s2 in the intersection equation should also vanish. This may happen only if b = 0
(as the point M0 is biregular, the curvature is not zero at this point). Thus, we have
osculation contact if we impose a = 0 and b = 0. But this choice leads us to the
equation z = 0 for the plane Π, i.e. the plane is already completely determined (the
osculating plane).

d) As the plane Π is completely determined by the condition of having a second order
contact with the curve, we cannot specialize more, in order to have higher order
contact (superosculation). Anyway, looking at the intersection equation, we conclude
that the osculating plane has a contact or superosculation with the curve at the planar
points of the curve, where the torsion vanishes. At all other points, the contact is just
of second order (osculation).

1.13 The contact between a space curve and a sphere. The
osculating sphere

As in the previous paragraph, we consider a naturally parameterized curve (I, r), we
assume that 0 is an interior point of the interval I and that r(0) is a biregular point of the
curve. We choose as coordinate frame the Frenet frame of the curve r at the point M0,
R0 = {M0; τ0, ν0,β0}. Then an arbitrary sphere passing through the point M0 will have,
with respect to this coordinate system, the equation

F(x, y, z) ≡ x2 + y2 + z2 − 2ax − 2by − 2cz = 0, (1.13.1)

whereΩ(a, b, c) is the center of the sphere. Then the condition of the intersection will be,
again, F(x(s), y(s), z(s)) = 0, where x = x(s), y = y(s), z = z(s) are the local equations of
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the curve with respect to the Frenet frame at M0. Thus, in our case, we have

F(x(s), y(s), z(s)) =
(
s −

1
6

k2(0)s3 + o(s3)
)2

+

(
1
2

k(0)s2 +
1
6

k′(0)s3 + o(s3)
)2

+

+

(
1
6

k(0)χ(0)s3 + o(s3)
)2

− 2a
(
s −

1
6

k2(0)s3 + o(s3)
)
−

− 2b
(
1
2

k(0)s2 +
1
6

k′(0)s3 + o(s3)
)
− 2c

(
1
6

k(0)χ(0)s3 + o(s3)
)
= 0.

(1.13.2)

or

−2as + (1 − bk(0))s2 +
1
3

(ak2(0) − bk′(0) − ck(0)χ(0))s3 + o(s3). (1.13.3)

Now, the discussion that follows is, also, similar to that from the case of the contact
between a curve and a plane. Still, here we have more cases to take into consideration.

a) If a , 0, then s = 0 is a simple solution of the intersection equation. Thus, in this
case the sphere and the curve have a contact of order zero (intersection contact).

b) The sphere and the curve have a first order contact (tangency contact) if and only if
the intersection equation has a double zero at the origin. This happens, obviously, iff
a = 0. This means that the first coordinate of the center of the sphere is zero, i.e. this
center lies in the normal plane of the curve at M0. It is easy to see that in this case
the tangent line at M0 of the curve lies in the tangent plane of the sphere at the same
point, which justifies once more the denomination of tangency contact.

c) For an osculation (second order) contact, the coefficient of s2 in the intersection equa-
tion also has to vanish and we get

b =
1

k(0)
= R(0), (1.13.4)

where R(0) is the curvature radius of the curve at the point M0. Thus, in this case, the
center of the sphere lies on the intersection line of the planes x = 0 (the normal plane)
and y = R(0). This line, which, as one can easily see, is parallel to the binormal of
the curve at M0, is called curvature axis or polar axis of the curve. It intersects the
osculating plane at M0 of the curve at the center of curvature at M0 of the curve.
Thus, any sphere with the center on the curvature axis of the curve has an osculation
contact with this one.
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d) We shall say that the sphere has a contact of superosculation with the curve if they
have a contact of order at least three, which means that in the intersection equation
the coefficients of the of the powers up to three of s have to vanish simultaneously. It
is usually claimed that there is a single sphere which has a contact of superosculation
with the curve and this sphere is called the osculating sphere. In reality, the things
are a little bit more subtle, as we shall see in a moment.

1) Let us assume, first, that the torsion of the curve at M0 does not vanish, i.e. χ(0) ,
0. In this case, as one sees immediately, between the sphere and the curve there is
a superosculation contact if and only if we have

a = 0,
b = 1

k(0) ,

c = k′(0)
k2(0)χ(0) ,

(1.13.5)

i.e. in this case the sphere is uniquely determined and we will call it osculating
sphere 7.

2) If χ(0) = 0, while k′(0) , 0, as one can see easily, the coefficient of s3 is never
zero, therefore there is no sphere which has a superosculation contact with the
curve. However, as we have seen in the previous paragraph, in this case the oscu-
lating plane has a superosculation contact with the curve and we can think of this
plane as playing also the role of the osculating sphere, of infinite radius, though.

3) If both χ(0) and k′(0) vanish, then the coefficient of s3 in the intersection equation
vanishes for any c, in other words in this case any sphere which has an osculation
contact with the curve also has a superosculation contact. Thus, now we have an
infinity of osculating spheres.

1.14 Existence and uniqueness theorems for parameterized
curves

1.14.1 The behaviour of the Frenet frame under a rigid motion

Definition 1.14.1. A rigid motion of R3 is a map D : R3 → R3, D(x) = A · x+ b, where
A ∈ M3×3(R) is an orthogonal matrix, At · A = I3, with the determinant equal to one:
detA = 1, while b ∈ R3 is a constant vector. The linear map A : R3 → R3, A(x) = A · x
is called the homogeneous part of the rigid motion.

7In some books all the spheres which have an osculation contact with the curve are called osculating
spheres, while the one which has a superosculation contact is called, accordingly, superosculating sphere
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Remarks. (i) A rigid motion in R3 is just a rotation around an arbitrary axis followed
by a translation.

(ii) If we don’t ask detA = 1, we get, equally, an isometry of R3. However, in this case
(if detA = −1), a transformation D(x) = A · x + b does not reduce anymore to a
rotation and a translation, we have to add, also, a reflection with respect to a plane.
In many books the term “motion” implies only that the matrixA is orthogonal and
for what we call “rigid motion” it is used the term “proper motion”.

Definition 1.14.2. Let D : R3 → R3 be a rigid motion, with the homogeneous part
A : R3 → R3. The image of a parameterized curve (I, r = r(t)) through D is, by
definition, the parameterized curve (I, r1 = (D ◦ r)(t)).

Remark. Since A is a nondegenerate linear map, the image of a regular parameterized
curve is, also, a regular parameterized curve.

Theorem 1.14.1. Let D be a rigid motion of R3, with the homogeneous part A, (I, r =
r(t)) – a biregular parameterized curve, (I, r1 = D ◦ r) – its image through D and
{r(t); τ(t), ν(t),β(t)} – the Frenet frame of the parameterized curve r at t. Then the frame
{r1(t); A(τ(t)), A(ν(t)), A(β(t))} is the Frenet frame of r1 at t.

Proof. Let r(t) = (x(t), y(t), z(t)), D(x, y, z) = (x1, y1, z1), where
x1 = α11x + α12y + α13z + b1

y1 = α21x + α22y + α23z + b2

z1 = α31x + α32y + α33z + b3

(1.14.1)

Then

r1(t) = (x1(t), y1(t), z1(t)),

hence

r′1(t) = A(r′(t)), r′′1(t) = A(r′′(t)). (1.14.2)

Since A is a linear isometry, preserving the orientation of R3, we have

‖r′1‖ = ‖A(r′)‖ = ‖r′‖, r′1 · r′′1 = r′ · r′′,
r′1 × r′′1 = A(r′ × r′′), ‖r′1 × r′′1‖ = ‖r′ × r′′‖.
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Then:

τ1 =
r′1
‖r′‖
=

A(r′)
‖A(r′)‖

=
A(r′)
‖r′‖

= A
(

r′

‖r′‖

)
= A(τ)

ν1 =
‖r′1‖

‖r′1 × r′′1 ‖
r′′1 −

r′1 · r
′′
1

‖r′1‖ · ‖r
′
1 × r′′1 ‖

r′1 =
‖r′‖

r′ × r′′
· A(r′′)−

−
r′ · r′′

‖r′‖ · ‖r′ × r′′‖
· A(r′) = A(ν)

β1 =
r′1 × r′′1
‖r′1 × r′′1 ‖

= A(β).

�

Consequence. The parameterized curves (I, r) and (I, r1 = D ◦ r) have the same curva-
ture and torsion.

Proof. We have

k1 =
‖r′1 × r′′1 ‖
‖r′1‖

=
‖r′ × r′′‖
‖r′‖

= k.

For the torsion, the situation is slightly more complicated. We have, from the theorem,

β1(t) = A(β(t)) and ν1(t) = A(ν(t)).

A being a linear operator, a similar result holds for the derivatives of the two Frenet
vectors, i.e. we have

β′1(t) = A(β′(t)) and ν′1(t) = A(ν′(t)).

Using the last Frenet equations for the two curves, we have the equalities

−χ1(t)ν1(t) = A(−χ(t)ν(t)) = −χ(t)A(ν(t)) = −χ(t)ν1(t),

and, thus, the two torsions are equal, as claimed. �

1.14.2 The uniqueness theorem

Theorem 1.14.2. Let (I, r = r(t)) and (I, r1 = r1(t)) be two biregular parameterized
curves. If k(t) = k1(t), χ(t) = χ1(t) and ‖r′(t)‖ = ‖r′1(t)‖ ∀t ∈ I, then there is a single
rigid motion D of R3 such that r1 = D ◦ r.
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Proof. Let t0 ∈ I be an arbitrary point and D – the rigid motion of R3 sending the Frenet
frame {r(t0); τ0, ν0,β0} of the curve r at t0 into the Frenet frame {r1(t0); τ10, ν10,β10}

of the curve r1 at the same point. Obviously, there is a single rigid motion with this
property. Let (I, r2(t=D ◦ r(t)) – the image of the curve r through D, and k2, χ2 – the
curvature and the torsion, respectively, of the parameterized curve r2. Then

k2(t) ≡ k(t) ≡ k1(t)

χ2(t) ≡ χ(t) ≡ χ1(t)

and, moreover,

‖r
′

2(t)‖ ≡ ‖r
′

1(t)‖.

Therefore, the vector functions τ1(t), ν1(t), β1(t) and τ2(t), ν2(t), β2(t) giving the Frenet
frame are solutions of the same system of Frenet equations

τ′ = ‖r′1‖k1ν

ν′ = −‖r′1‖k1τ + ‖r
′

1‖χ1β

β′ = −‖r′1‖χ1ν.

Since for t = t0 the solutions coincide, due to the uniqueness theorem for the solution of
a Cauchy problem they have to coincide globally. In particular, we have

τ1(t) ≡ τ2(t) or
r′1(t)

‖r′1(t)‖
=

r′2(t)

‖r′2(t)‖
,

hence

r
′

1(t) − r
′

2(t) = 0 ⇒ r1(t) − r2(t) = const.

But for t = t0, r1(t0) − r2(t0) = 0, hence the two functions coincide for all t, thus
r1(t) ≡ r2(t) = D ◦ r(t).

As for the uniqueness of D, we notice that, for any other point t1 ∈ I, since r1 ≡ r2,
D sends the Frenet frame of the curve r at t1 into the Frenet frame of the curve r1 at
t1. �

Remark. For naturally parameterized curves the condition ‖r′(t)‖ = ‖r′1(t)‖ is always
fulfilled.
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1.14.3 The existence theorem

Theorem 1.14.3. Let f (s) and g(s) be two smooth functions, defined on an interval
I, such that f (s) > 0, ∀t ∈ I. Then there is a single naturally parameterized curve
(I, r = r(s)) for which f (s) = k(s) ∀s ∈ I and g(s) = χ(s) ∀s ∈ I. This curve is uniquely
defined, up to a rigid motion of R3.

Proof. Let {r0; T0,N0,B0} be a direct orthonormal frame in
mathbbR3. We consider the system of linear ordinary differential equations

T′(s) = f (s)N(s)
N′(s) = − f (s)T(s) + g(s)B(s)
B′(s) = −g(s)N(s)

(1.14.3)

with respect to the vector functions T(s),N(s),B(s).
If we denote

X(s) = (T(s),N(s),B(s)), (1.14.4)

then the system (1.14.3) can be written as

X′(s) = A(s) · X(s), (1.14.5)

with

A(s) =

 0 f (s) 0
− f (s) 0 g(s)

0 −g(s) 0

 .
In the theory of ordinary differential equations one proves that the system (1.14.5) has a
single solution subject to

X(s0) = (T0,N0,B0),

where s0 ∈ I, while the columns of the matrix X(s0) are the vectors T0,N0,B0 of the
initial orthonormal basis.

We are going to show first that, for any s ∈ I the vectors din (T(s),N(s),B(s))
form an orthonormal basis. It is enough to show for any s ∈ I, X(s) is orthogonal, i.e.
Xt(s) · X(s) = I3, for any s ∈ I. We have

d
dt

(
Xt · X

)
=

d
dt

(
Xt(s)

)
· X + Xt ·

d
dt

(X(s)) = Xt(AtX + AX) = Xt(At + A)X.

but, as A is skew symmetrical, At + A = 0, therefore

d
dt

(
Xt · X

)
= 0 ⇒ Xt · X = const.
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On the other hand, from the initial condition,
(
Xt · X

)
(s0) = I3, hence Xt(s) · X(s) = I3

for any s ∈ I.
Let us define now

r = r0 +

s∫
s0

T(s)ds, (sol)

where r0 is the origin of the original frame, while T(s) is the first column of X(s). We
are going to show that (I, r(s)) is the curved searched for. We have, clearly:

r′(s) = T(s),

‖r′(s)‖ = ‖T(s)‖ = 1,

r′′(s) = T
′

(s) = f (s)N(s).

We note immediately that r′(s) × r′′(s) , 0, therefore r(s) is a biregular naturally para-
meterized curve. On the other hand,

r′′′(s) = ( f (s)N)′ = f ′N + f N
′

= f ′N + f (− f T + gB) = − f 2T + f ′N + f gB,

hence

(r′, r′′, r′′′) = (T, f N,− f 2T + f ′N + f gB) = (T, f N, f gB) = f 2g (T,N,B)︸    ︷︷    ︸
=1

= f 2g.

Now we have all we need to compute the curvature and the torsion:

k(s) =
‖r′ × r′′‖
‖r′‖3

= | f (s)| = f (s),

χ(s) =
f 2(s)g(s)

f 2(s)
= g(s),

hence the curve r fulfils the conditions of the theorem.
The uniqueness of r, up to rigid motions, follows from the previous theorem. �
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CHAPTER 2

Plane curves

2.1 Introduction

After the exposition of the theory of space curves in all the generality, we shall focus in
this chapter on topics which are specific to the theory of plane curves. In particular, we
shall discuss here notions which cannot be defined for space curves (such as the signed
curvature), or which are easier to investigate and richer in contents for plane curves.

2.2 Envelopes of plane curves

In this section, if not mentioned otherwise, all the curves are parameterized curves, if
not specified otherwise. Let

r = r(t, λ) (2.2.1)

be a family of plane parameterized curves, depending smoothly on a real parameter λ.

Definition. The envelope of the family (2.2.1) is a parameterized curve (J,Γ) which, at
each point, is tangent to a curve from the family.

Theorem. The points of the envelope of the family r(t, λ) are subject to

r = r(t, λ) (2.2.2)

r
′

λ × r
′

t = 0. (2.2.3)
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Proof. If Γ is the envelope of the family (γλ) and P is a point of Γ, then P is a tan-
gency point between Γ and a curve from the family, corresponding to some value of the
parameter λ. Thus, the equation of Γ will be of the form

r1 = r1(λ).

On the other hand, P is on a curve γλ and, therefore, it verifies

r1 = r(t(λ), λ).

The tangency condition between Γ and γλ reads

r
′

1λ ‖ r
′

t

or
r
′

1λ × r
′

t = 0

or, also, since r′1λ = r′t · t
′
λ + r′λ,

(r
′

t · t
′
λ + r

′

λ) × r
′

t = 0,

and the theorem is proven, because r′t × r′t = 0. �

Remarks. 1. The set of points described by the equations (2.2.2) and (2.2.3) is
called the discriminant set of the family γλ. It includes not only the support of the
envelope, but, also, the singular points of the curves from the family, for which
r′t = 0.

2. The equation r′λ × r′t = 0 can be written also as∣∣∣∣∣∣∣∣∣
i j k

x′λ y′λ 0
x′t y′t 0

∣∣∣∣∣∣∣∣∣ = 0 ⇔ x′λy′t − x′ty
′
λ = 0 ⇔

⇔
x′λ
x′t
=

y′λ
y′t
. (2.2.4)

Example. Let us consider the family of curves

r(t, λ) = (λ + a cos t, λ + a sin t), λ, t ∈ R, a > 0.
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Clearly, we are dealing with a family of circles of radius a, with the centres on the first
bisector of the coordinate axes. Then we have

r′λ = {1, 1},
r′t = {−a sin t, a cos t},

therefore, the points of the envelope (and only them, since the circles have no singular
points) verify 

x = λ + a cos t
y = λ + a sin t
x′λ · y

′
t = x′t · y

′
λ

or 
x = λ + a cos t
y = λ + a sin t
a cos t = −a sin t.

Eliminating t, we get the parametric equations of the envelope:x(λ) = λ ± a√
2

y(λ) = λ ∓ a√
2
,

i.e. the envelope is, in fact, a pair of straight lines, parallel to the first bissector of the
coordinate axes.

2.2.1 Curves given through an implicit equation

Proposition 2.2.1. The points of the envelope of a family of plane curves given through
the implicit equation

F(x, y, λ) = 0 (2.2.5)

verify the system of equations F(x, y, λ) = 0
F′λ(x, y, λ) = 0

(2.2.6)

Proof. Locally, around each point of a the curve of the family, we can parameterize the
curve, i.e. we can represent it as x = x(t, λ)

y = y(t, λ)
.
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By substituting into the equation of the family, we get

F(x(t, λ), y(t, λ), λ) = 0,

whence, differentiating with respect to t and λ, respectively, we obtain the system:F′xx′t + F′yy′t = 0
F′xx′λ + F′yy′λ + F′λ = 0

.

But, from (2.2.4),
x′λ = Kx′t , y′λ = Ky′t ,

with K = const., therefore, the second equation from above becomes

K(F′xx′t + F′yy′t︸        ︷︷        ︸
=0

) + F′λ = 0

or
F′λ = 0.

�

Example. We consider again the family of circles from the previous paragraph, this time
given through their implicit equation

F(x, y, λ) ≡ (x − λ)2 + (y − λ)2 − a2 = 0.

Then the second equation of the discriminant set will be

F′λ(x, y, λ) = −2(x + y − 2λ) = 0,

whence we get

λ =
x + y

2
,

which, when substituted into the equation of the family, gives

(x − y)2 = 2a2,

i.e. we get, again, the same equations of the envelope as before, namely

y = x ± a
√

2.
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2.2.2 Families of curves depending on two parameters

Proposition 2.2.2. Suppose we are given a family of curves depending smoothly on two
parameters, λ and µ

F(x, y, λ, µ) = 0, (2.2.7)

where the parameters λ and µ are connected through a relation

ϕ(λ, µ) = 0, (2.2.8)

then the points of the envelope verify the system
F(x, y, λ, µ) = 0
ϕ(λ, µ) = 0
D(F, ϕ)
D(λ, µ)

= 0
. (2.2.9)

Proof. From the equation
ϕ(λ, µ) = 0,

we can assume, if, for instance, that

µ = µ(λ),

therefore, substituting in F, and ϕ,F(x, y, λ, µ(λ)) = 0,
ϕ(λ, µ(λ)) = 0.

Differentiating with respect to λ these two equations, we get:F′λ + F′µµ
′
λ = 0

ϕ′λ + ϕ
′
µµ
′
λ = 0.

Eliminating the derivative µ′λ between the two equations, we get the third equation
from (2.2.9), as required. �

2.2.3 Applications: the evolute of a plane curve

Definition. Let (I, r = r(t)) be a plane parameterized curve. The evolute of r is, by
definition, the envelope of the family of normals of the curve.
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The following result holds:

Proposition 2.2.3. The parametric equations of the evolute of the curve r = r(t) =
(x(t), y(t)) are 

X = x −
y′(x′2 + y′2)
x′y′′ − x′′y′

Y = y +
x′(x′2 + y′2)
x′y′′ − x′′y′

(2.2.10)

Proof. As we know, the equation of the normal of a plane curve is

F(X,Y, t) = (X − x(t)) · x′(t) + (Y − y(t)) · y′(t) = 0.

The relations verified by the points of the envelope of the family of normals (and only
by them, since in this case the curves of the family are straight line and they have no
singular points) are (see (2.2.6)): F(X,Y, t) = 0

F′t (X,Y, t) = 0
,

i.e. x′(t)X + y′(t)Y = x(t) · x′(t) + y(t) · y′(t)
x′′(t)X + y′′(t)Y = x′2(t) + x′′(t) · x(t) + y′2(t) + y(t) · y′′(t)

.

The equations (2.2.10) follow now instantly, after solving this system of linear equations
with respect to X and Y . �

Example. For the ellipse x = a cos t
y = b sin t

one gets, after the computations, X = a2−b2

a cos3 t
Y = b2−a2

b sin3 t

or, eliminating the parameter t,

a
2
3 X

2
3 + b

2
3 Y

2
3 = (a2 − b2)

2
3 .

The curved described by this equation is called a lengthened astroid (see figure 2.2.3).
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Figure 2.1: The evolute of an ellipse

2.3 The curvature of a plane curve

As we saw, in the case of an arbitrary space curve, the curvature is always a positive
scalar. Of course, this concept of curvature can be equally applied for plane curves. It
turns out, however that, in this particular case, we can obtain more information about
the curve if we use a slightly different concept, allowing the curvature to have a sign.
To define the curvature of a plane curve we shall use a little technical trick, which will
allow us to give the definition in a coordinate independent way.

Definition. The complex structure on R2 is the map J : R2 → R2, defined by

J(x, y) = (−y, x).

Remark. Applying J simply means to rotate the vector {x, y} by π
2 or multiplying the

complex number x + iy by the complex unit i (this is, actually, the origin of the name).

Some obvious properties of the complex structure are collected into the following
proposition:

Proposition 2.3.1. a) Jv · Jw = v · w.

b) (Jv) · v = 0.
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c) J(Jv) = −v (i.e. J2 = −id).

All these properties follow immediately from the geometrical interpretation of the
complex structure.

Anticipating a little bit, we would like to say a few words about the kind of curvature
we are going to define. We remember that the curvature of an arbitrary parameterized
space curve r = r(t) can be computed by

k(t) =
‖r′(t) × r′′(t)‖
‖r′(t)‖3

.

Now, if r is a plane curve, with the support lying into the coordinate plane xOy, then the
vectors r′(t) and r′′(t) are situated, also, into this plane. Therefore, their vector product
is a vector which is directed along the z axis, and, therefore, the norm of this vector is
just the absolute value of the z-component. Now, the idea of the definition of the signed
curvature is just to replace this absolute value with the component itself. To do that, the
following characterization of the vector product of two vectors in the plane will prove
very useful.

Proposition 2.3.2. Let u(x1, y1), v(x2, y2) ∈ R2. Then

u × v = [v · Ju] · k.

Proof. As it is known, the cross product of the vectors u and v can be computed by

u × v =

∣∣∣∣∣∣∣∣∣
i j k

x1 y1 0
x2 y2 0

∣∣∣∣∣∣∣∣∣ = (x1y2 − x2y1) · k.

On the other hand,

[v · Ju] = {x2, y2} · {−y1, x1} = −x2y1 + x1y2,

whence the equality announced. �

We are now ready to define the curvature of a plane curve.

Definition. Let r = r(t) be a plane parameterized curve. The signed curvature of r is,
by definition, the quantity

k± =
r′′ · Jr′

‖r′‖3
. (2.3.1)
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Remark. According to the proposition 2.3.2, the signed curvature is just the projection of
the curvature vector on the z-axis. Now, as the curvature vector is parallel to the z-axis,
we have, thus

|k±| =
‖r′ × r′′‖
‖r′‖3

= k.

Another immediate, but important, for computational reasons, result, is the follow-
ing:

Proposition 2.3.3. Let (I, r = r(t)) be a plane parameterized curve. If r(t) = (x(t), y(t)),
then the signed curvature of r can be expressed as

k±(t) =
x′(t)y′′(t) − x′′(t)y′(t)(

x′2(t) + y′2(t)
)3/2 .

Consequence. If y = f (x) is the explicit equation of a plane curve, then its signed
curvature is given by

k±(x) =
f ′′(x)

(1 + f ′2)3/2
.

Remark. The previous consequence show that, for an explicitly given curve (i.e. the
graph of a real function of a single real variable) the sign of the signed curvature is, in
fact, the sign of the second derivative of the function f , i.e., as it known from calculus,
the signed of the signed curvature is a n indication of the convexity or concavity of the
function.

Exactly as happens for the torsion of the space curves, the signed curvature of a plane
curve is “almost” invariant at a parameter change, i.e. we have

Theorem. Let (I, r = r(t)) be a plane parameterized curve (J, ρ = ρ(u)) an equivalent
parameterized curve, with the parameter change λ : I → J, u = λ(t). Then

k±[ρ](u) = sgn(λ′) · k±[r](t).

Proof. We have

r(t) = ρ(λ(t))

r′(t) = ρ′(λ(t)) · λ′(t)

r′′(t) = ρ′′(λ(t)) · λ′2(t) + ρ′(λ(t)) · λ′′(t)

r′′ · Jρ′ = (ρ′′λ′2 + ρ′λ′′· J(λ′ρ′) =

= λ′3ρ′′ · Jρ′ + λ′λ′′ ρ′ · Jρ′︸  ︷︷  ︸= 0 = λ′3ρ′′ · Jρ′

‖r′‖3 = |λ′3|‖ρ′‖3
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therefore

k±[r](t) =
r′′ · Jr′

‖r′‖3
=
λ′3

|λ′3|
·
ρ′′(u) · Jρ′(u)
‖ρ′(u)‖3

= sgn(λ′) · k±[ρ](u),

whence
k±[ρ](u) = sgn(λ′) · k±[r](t).

�

Remark. The previous theorem shows that the signed curvature is invariant under any
positive parameter change, therefore it makes sense to define it also for regular oriented
plane curves.

The curvature vector of a plane, naturally parameterized curve can be expressed
easily as a function of the signed curvature:

Lemma. Let (I, r = r(s)) be a plane naturally parameterized curve. Then

r′′(s) = k±(s) · Jr′(s).

Proof. We have r′2(s) = 1 (the curve is naturally parameterized), therefore r′ · r′′ = 0,
whence it follows that r′′ ⊥ r′ or, which is the same, r′′ ‖ Jr′.

On the other hand, from the definition of the signed curvature, k±(s) = r′′(s) · Jr′(s).
If we put r′′(s) = α(s) ·Jr′(s), then we should have r′′(s) ·Jr′(s) = α(s) ·[Jr′(s)]2 = α(s),
whence α(s) = k±(s). �

2.3.1 The geometrical interpretation of the signed curvature

For the signed curvature of plane curve we have a geometrical interpretation which is
similar to the geometrical interpretation of the curvature of a space curve, except that,
this time the sign is also taken into account. We will need first the following definition.

Definition. Let (I, r = r(t)) be a plane parameterized curve. The rotation angle of r is
the function θ[r] : I → R, defined through:

τ(t) = {cos θ[r](t), sin θ[r](t)} = exp(iθ[r](t)), (2.3.2)

where τ(t) is the unit tangent, i.e. θ[r] is the angle made by the unit tangent with the
positive direction of the x axis.
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Remark. This definition is very innocent looking and natural. After all, is should be
clear for anyone that θ is just the angle made by the unit tangent vector with the positive
direction of the x-axis. In reality, however, for an arbitrary plane curve, it is by no mean
obvious that we can find a continuous angle function, let alone a smooth one. Such
functions do exist (see, for instance, for a modern proof, the book of Bär, [1]) and any
two such functions differ by an integer multiple of 2π.

The following lemma provides the connection between the signed curvature and
the variation of the rotation angle. The contents of this lemma is quite similar to the
geometrical interpretation of the curvature of a space curve. In fact, when the plane
curve is regarded as a particular case of space curve, then the variation of the rotation
angle is equal (as absolute value) with the variation of the contingency angle, therefore,
in fact, the geometrical interpretation of the absolute curvature of a plane curve (regarded
as a curve in space) is an immediate consequence of this lemma.

Lemma. If (I, r = r(t)) is a plane regular parameterized curve, θ is its rotation angle
and k± – its signed curvature, then:

dθ
dt
= ‖r′(t)‖k±(t).

Proof. From the definition of the unit tangent vector we have τ(t) = r′(t)
‖r′(t)‖ , whence

dτ
dt
=

r′′(t)
‖r′(t)‖

+ r′(t)
d
dt

(
1

‖r′(t)‖

)
.

On the other hand, if we use the expression of τ(t) as a function of the angle θ, given by
(2.3.2), we get for dτ

dt the formula

dτ
dt
=

dθ
dt
{− sin θ(t), cos θ(t)} =

dθ
dt

Jτ(t).

Combining the two relations, we get the equality

r′′(t)
‖r′(t)‖

+ r′(t)
d
dt

(
1

‖r′(t)‖

)
=

dθ
dt

Jτ(t) ≡
dθ
dt
·

Jr′′(t)
‖Jr′(t)‖

.

Multiplying both sides by Jr′(t) and having in mind that Jr′(t) · r′(t) = 0 and Jr′(t) ·
Jr′(t) = ‖r′(t)‖2, we obtain:

r′′(t) · Jr′(t)
‖r′(t)‖

=
dθ
dt
· ‖r′(t)‖,
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whence, using the definition of the signed curvature, it follows that

dθ
dt
· ‖r′(t)‖ = k±(t) · ‖r′(t)‖2

or, after simplification,
dθ
dt
= k±(t) · ‖r′(t)‖,

which is exactly what we had to prove. �

Corollary. For a naturally parameterized curve, (I, r = r(s)), we have

k±(s) =
dθ
ds
.

Remark. From the previous formula we get

k ≡ ‖k±‖ =
∣∣∣∣∣dθds

∣∣∣∣∣ ,
which is exactly the formula for the curvature of arbitrary space curves, which, thus,
remains valid, as expected, for the particular case of plane curves.

2.4 The curvature center. The evolute and the involute of a
plane curve

Definition. A point Ω ∈ R2 is called the curvature center at r0 = r(t0) of a plane
parameterized curve r : I → R2 if there is a circle (γ), centred at Ω, which is tangent to
the curve at r0 = r(t0), with t0 ∈ I, such that the signed curvatures r and γ at r0 coincide,
whence the position of the point Ω for an arbitrary t ∈ I:

Ω(t) = r(t) +
1

k±(t)
Jr′(t)
‖r′(t)‖

.

Remark. The notion of curvature center is invariant at a parameter change: if (J, ρ =
ρ(u)) is equivalent to r, with the parameter change λ : I → J, then r′(t) = ρ′(λ(t))λ′(t)
and k±[r](t) = sgn(λ′)k±[ρ](λ(t)). Obviously, we could have problems only when λ′ < 0,
but in this case Jr′ changes the sense and k± changes the sign and, overall, the situation
remains unchanged.

We defined the evolute of a plane curve as being the envelope of the normals of the
curve. The following proposition provides a different approach.
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Proposition 2.4.1. The evolute of a plane curve is the geometrical locus of the curvature
centers of the curve.

Proof. The curvature center of the curve at an arbitrary value of the parameter is

Ω(t) = r(t) +
‖r′(t)‖2

r′′(t) · Jr′(t)
· Jr′(t) = (x(t), y(t)) +

x′2 + y′2

x′y′′ − x′′y′
{−y′, x′}.

Thus, if Ω(t) = (X(t),Y(t)), projecting the previous equation on the coordinate axes, we
get the parametric equations of the locus of curvature centers:X(t) = x(t) − y′(x′2+y′2)

x′y′′−x′′y′

Y(t) = y(t) + x′(x′2+y′2)
x′y′′−x′′y′

,

which are exactly the equations of the evolute. �

From the previous remark, we get immediately:

Corollary. The definition of the evolute makes sense also for regular curves (i.e. two
equivalent parameterized curves have the same evolute).

Exercise 2.4.1. Find the evolute of the astroidx(t) = a cos3 t,
y = a sin3 t

.

Show that the evolute is also an astroid (see the figure ??.

Exercise 2.4.2. Find the evolute of the cycloidx(t) = a(t − sin t),
y = a(1 − cos t)

.

Show that the evolute is also an cycloid (see the figure ??.

Another interesting plane curve associated to a given one is the so-called involute,
which,a s we shall see immediately, is, in a sense, the inverse of the evolute.

Definition. Let (I, r = r(s)) be a naturally parameterized curve c ∈ I. The involute of r
with the origin at r(c) (or at c, for short) is the parameterized curve (I, ρ[r, c] = ρ[r, c](s))
where

ρ[r, c](s) = r(s) + (c − s)r′(s).
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Figure 2.2: The evolute of an astroid

Figure 2.3: The evolute of an cycloid

Remark. Generally speaking, s is not a natural parameter along ρ.

If (I, r = r(t)) is an arbitrary parameterized curve, the we can replace the parameter

t by the arc length s =
t∫

0
‖r′(τ)‖dτ and define the involute of r as being the involute of

the naturally parameterized curve equivalent to it, the natural parameter being the arc
length. Is is easy to see that the following proposition holds true:

Proposition 2.4.2. Let (I, r = r(t)) be a parameterized curve. The the involute of r with
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the origin at c ∈ I is given by

ρ(t) = r(t) + (c − s(t))
r′(t)
‖r′(t)‖

,

where s = s(t) is the arc length of r.

Example. Let r(t) = (a cos t, a sin t) be a circle. Then
r′(t) = {−a sin t, a cos t}
x′2 + y′2 = a2

s(t) =
t∫

0
adt = at,

hence the equation of the involute is

ρ(t) = (a cos t, a sin t) +
(c − at)

a
{−a sin t, a cos t}

or, in projection, X(t) = a cos t − (c − at) sin t
Y(t) = a sin t + (c − at) cos t

.

We represented in the figure 2.4 an involute of a circle of radius 1.5, with the origin at
the point of parameter 0.

The following lemma establishes the connection between the signed curvature of a
parameterized curve and that of one of its involutes and will serve as a tool to establish
the relation between evolute and involute.

Lemma. Let (I, r = r(s)) be a naturally parameterized curve and ρ the involute of r
with the origin at c ∈ I. Then the signed curvature of ρ is given by

k±[ρ](s) =
sgn(k±[r](s))
|c − s|

.

Proof. We have

ρ′(s) = r′(s) + (c − s)r′′(s) − r′(s) = (c − s)r′′(s) = (c − s)k±[r](s) · Jr′(s)

ρ′′(s) = −k±[r](s·Jr′(s) + (c − s)(k±[r](s))′ · Jr′(s) + (c − s)k±[r](s) · Jr′′(s)

= [−k±[r](s) + (c − s)(k±[r](s))′] · Jr′(s) − (c − s)(k±[r](s))2 · r′(s),
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Figure 2.4: An involute of a circle

whence
Jρ′ = −(c − s)k±[r](s) · r′(s),

while
ρ′′(s) · Jρ′(s) = (c − s)2 · (k±[r](s))3.

The conclusion follows now from the definition of the signed curvature. �

The following theorem provides a connection between the involute and the evolute.
In many textbooks this connection is taken, in fact, as the definition of the involute.

Theorem. Let (I, r = r(s)) be a naturally parameterized curve and ρ – its involute with
the origin at c ∈ I. The the evolute of ρ is r.

Proof. The evolute of ρ is given, as known, by the equation

ρ1(s) = ρ(s) +
1

k±[ρ](s)
·

Jρ′(s)
‖ρ′(s)‖

.

Using the previous lemma to express the signed curvature of ρ as a function of the signed
curvature of r, we get

ρ1(s) = r(s) + (c − s)r′(s) +
|c − s|

sgn(k±[r](s))
·

(c − s)k±[r](s) · J2r′(s)
‖(c − s)k±[r](s) · Jr′(s)‖

= r(s).

�
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2.5 The osculating circle of a curve

Definition. Let (I, r = r(t)) be a parameterized curve. The osculating circle of r at a
point t ∈ I is the circle centered at the curvature center Ω(t), with the radius equal to the
curvature radius 1

k(t) of the curve at that point.

Exactly as the osculating plane at a point of a space curve can be regarded as a limit
position of a plane determined by three neighboring points, when these points approach
indefinitely the given one, the osculating circle is the limit position of a circle determined
by three neighboring points, when these points approach indefinitely the given one. More
precisely, we have:

Theorem. Let (I, r = r(t)) be a plane parameterized curve and t1 < t2 < t3 ∈ I Let
C(t1, t2, t3) be the circle passing through r(t1), r(t)2), r(t3). We assume that, for a value
t ∈ I of the parameter we have k±(t) , 0. Then the osculating circle of r at the point r(t)
is the circle

C = lim
t1→t
t2→t
t3→t

C(t1, t2, t3).

Proof. Let A(t1, t2, t3) be the centre of the circle C(t1, t2, t3) and f : I → R – the function
defined through f (t) = ‖r(t) − A‖2. Then, clearly, f is smooth and we have: f ′(t) = 2r′ · (r(t) − A)

f ′′(t) = 2r′′(t) · (r(t) − A) + 2‖r′(t)‖2
.

Since f is differentiable and f (t1) = f (t2) = f (t3), from the mean value theorem it
follows that there exist two points u1, u2 ∈ I, with t1 < u1 < t2 < u2 < t3 such that

f ′(u1) = f (u2) = 0.

On the other hand, applying once more the mean value theorem, this time to the deriva-
tive f ′, which is also differentiable , it follows that there is a v ∈ (u1, u2) such that

f ′′(v) = 0.

Now, if we let t1, t2, t3 → t, then we will have, equally, u1, u2, v → t, therefore, at the
limit, we should get: r′(t) · (r(t) − A(t)) = 0

r′′(t) · (r(t) − A(t)) = −‖r′(t)‖2
, (*)



92 Chapter 2. Plane curves

where
A(t) = lim

t1→t
t2→t
t3→t

A(t1, t2, t3).

From (*) and the definition of the signed curvature, it follows that

r(t) − A(t) =
−1

k±(t)
·

Jr′(t)
‖r′(t)‖

,

hence C is the osculating circle of the curve r at the point r(t). �

2.6 The existence and uniqueness theorem for plane curves

The existence and uniqueness theorem for plane parameterized curves is similar to the
analogue theorem for space curves and can be proved in the same manner, therefore we
shall skip the proof here.

Theorem 2.6.1. Let f : I → R be a continuous function. Then there is a regular,
naturally parameterized curve (I, r = r(s)) such that ∀s ∈ I, k±(s) = f (s). r is unique,
up to a proper motion of R2.

To give an example, we will find the curve r for the particular case when the function
f is a constant α, for any real value of the parameter s.

Starting from the geometrical interpretation of the signed curvature, we get

α = k±(s) =
dθ
ds
,

therefore θ (the rotation angle) will be a linear function of s:

θ = αs + θ0,

where θ0 is a constant. On the other hand, from the definition of the rotation angle, we
obtain:

τ(s) ≡
{

dx
ds
,

dy
ds

}
= {cos θ(s), sin θ(s)} = {cos(αs + θ0), sin(αs + θ0)}

whence the system of differential equations:dx
ds = cos(αs + θ0)
dy
ds = sin(αs + θ0)

.



2.6. The existence and uniqueness theorem for plane curves 93

Since the equations are separated, the system can be integrated very easy and we get the
solution: x = 1

α [sinαs sin θ0 + cosαs sin θ0] + x0,

y = 1
α [− cosαs cos θ0 + sinαs sin θ0] + y0

, (*)

where x0 and y0 are two integration constant. The solution (*) can be written in the
matrix form [

x
y

]
=

 1
α sinαs sin θ0 +

1
α cosαs sin θ0

− 1
α cosαs cos θ0 +

1
α sinαs sin θ0

 + [
x0
y0

]
or, also, [

x
y

]
=

 cos
(
π
2 − θ0

)
sin

(
π
2 − θ0

)
− sin

(
π
2 − θ0

)
cos

(
π
2 − θ0

)  1
α cosαs
1
α sinαs

 + [
x0
y0

]
,

which shows that any plane curve of constant signed curvature, equal to α, can be ob-
tained from the curve x = 1

α cosαs
y = 1

α sinαs

by applying a rotation followed by a translation, i.e. a rigid motion. But this is the circle
of radius 1/α, centered at the origin. The conclusion is that the only plane curve of
constant positive curvature α is the circle of radius 1/α.



94 Chapter 2. Plane curves



CHAPTER 3

The integration of the natural equations of a curve

3.1 The Riccati equation associated to the natural equations
of a curve

The general theory of differential equations guarantees the existence and uniqueness (up
to a rigid motion) for the Frenet equations. However, finding analytically a curve when
the curvature and torsion are given is quite another matter. This, of course, amounts
to finding an analytical solution for the Frenet equations. Although they look quite
innocently, it turns out that, in the general situation, it is not possible to integrate the
system.

Clearly, if we manage to solve the Frenet system, the, in particular, we can find the
tangent versor and, by another quadrature, we can find the curve. Apparently, the Frenet
system should be equivalent to a third order vectorial differential equation or to a system
of three third order scalar equations. Nevertheless, it turns out that the system (made of
none scalar equations) actually contains three identical sets of three equations, therefore
it should be equivalent to a single third order scalar equations. Moreover, the three
vectors of the solution are subject to the orthonormality conditions, which should allow
further reductions. In fact, we shall prove this indirectly, by showing that the Frenet
system is equivalent to a second order Ricatti differential equation. As it is known from
the theory of ordinary differential equations, we can find the general solution of a Ricatti
equation if and only if a particular solution is already available (and there is no general
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procedure for finding such a solution).
Notice, first of all, that the Frenet system contains three copies of the scalar system:

X′ = k(s)Y,
Y ′ = −k(s)X + χ(s)Z
Z′ = −χ(s)Y

(3.1.1)

and the solution of the system should verify, also, the condition

X2 + Y2 + Z2 = 1. (3.1.2)

The idea of the method we are going to describe (and which goes back to Sophus Lie
and Gaston Darboux), relies exactly on the supplementary condition (3.1.2). Namely, it
was observed that this equation can be decomposed (over the complex numbers) as

(X + iY)(X − iY) = (1 − Z)(1 + Z).

We introduce now the complex functions u and v by letting

u =
X + iY
1 − Z

; −
1
v
=

X − iY
1 − Z

. (3.1.3)

Clearly, w and −1/v are conjugated to each other. It is now possible to express X,Y,Z in
terms of u and v. One can check easily that

X =
1 − uv
u − v

; Y = i
1 + uv
u − v

; Z =
u + v
u − v

. (3.1.4)

Thus, the solution of the Frenet system amounts to the finding of the complex functions
u and v. Now, an easy manipulation of the formulas show that both u and v are solution
of the Riccati equation

dw
ds
= −

i
2
χ(s) − ik(s)w +

iχ(s)
2

w2. (3.1.5)

This is, as we mentioned earlier, an indirect prove of the fact that the natural equations
of a space curve cannot be integrated through quadratures, in the general situation.

3.2 Examples for the integration of the natural equation of a
plane curve

We saw, in the previous section, that the plane curves of constant curvature are the cir-
cles. We shall give, here, other interesting examples of natural equation for plane curves
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that can be integrated. We remind that in the case of plane curves the problem is not the
integrability of the natural equation, but, rather, the possibility of expressing the solution
in terms of elementary functions. Usually this is not the case, and this makes even more
interesting the (few) cases in which this possibility does exist. For convenience, we shall
use, for the rest of this paragraph, the curvature radius R = 1/k instead of the curvature.

The logarithmic spiral. In this case the curvature radius is given by

R = a · s, (3.2.1)

where a is a constant. Let α be the contingency angle. Then, as we know, we have

dα
ds
=

1
R(s)

=
1
as
,

therefore, by integrating and neglecting the integration constant, we get

α =
1
a

ln s, whence s = eaα.

To get the coordinates, we have to integrate the system of differential equations

dx
ds
= cosα,

dy
ds
= sinα.

We have (neglecting, again, the integration constants)

x =
∫

cosαds = a
∫

cosαeaαdα =
aeaα

a2 + 1
(a cosα + sinα)

and, analogously,

y =
∫

sinα ds =
aeaα

a2 + 1
(a sinα − cosα).

Hence, the parametric equations of the logarithmic spiral are
x =

aeaα

a2 + 1
(a cosα + sinα)

y =
aeaα

a2 + 1
(a sinα − cosα)

. (3.2.2)

The logarithmic spiral (see figure 3.1) is most conveniently described through its polar
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Figure 3.1: The logarithmic spiral

equation, r = r(ϕ). We shall indicate now how can one obtain that equation starting from
the parametric equations. First of all, we notice that

x2 + y2 =
a2e2aα

a2 + 1
,

whence
r =

√
x2 + y2 =

aeaα

√
a2 + 1

.

We put a = tanψ. Then, for the polar angle we get

tanϕ =
y
x
=

a sinα − cosα
sinα + a cosα

= − cot(α + ψ),

therefore ϕ = α + ψ + π
2 , hence α = ϕ − ψ − π

2 . Thus

r = sinψeϕ−ψ−
π
2 ,

i.e. the polar equation of the logarithmic spiral is of the form

r = C · eϕ, (3.2.3)

where C is a constant.

Cycloidal curves. They correspond to the natural equation

s2

a2 +
R2

b2 = 1, (3.2.4)
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where a and b are nonvanishing constants. A possibility would be to express R in terms
of s and then integrate. However, this would lead to complications, due to the the pres-
ence of the square root and the sign ambiguity. We prefer, instead, to introduce a new
parameter t, through the relations

s = a sin t, R = b cos t.

It is, then, very easy to find the contingency angle in terms of this new parameter. Indeed,
we have

α =

∫
1
R

ds =
∫

1
b cos t

a cos t dt =
at
b
.

We can proceed now with the determination of the coordinates x and y, in terms of the
parameter t:

x =
∫

cosα ds =
∫

cos
at
b
· a · cos t dt =

a
2

(
b

a − b
sin

(a − b)t
b

+
b

a + b
sin

(a + b)t
b

)
,

y =
∫

sinα ds =
∫

sin
at
b
· a · cos t dt = −

a
2

(
b

a − b
cos

(a − b)t
b

+
b

a + b
cos

(a + b)t
b

)
.

The clothoid. This is the curve whose natural equation is

R =
a2

s
. (3.2.5)

Thus, for the clothoid (also known as the Cornu’s spiral), the radius of curvature is
proportional to the inverse of the arc length. From this point of view, it is, to some
extent, similar to the logarithmic spiral, where the radius of curvature was proportional
to the arc length, rather than to its inverse. We include this curve here to show that even
in the case of a very simple expression of the curvature in terms of the arc length (in this
case the curvature is proportional to the arc length, i.e. it is a linear function), we might
not be able to find a parametric representation in terms of elementary functions.

The contingency angle is easily found:

α =
s2

2a
, (3.2.6)

therefore the coordinates are

x =
∫

cos
s2

2a
ds, x =

∫
sin

s2

2a
ds. (3.2.7)
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Unfortunately, it is a well known fact from analysis that the integrals from (3.2.7) cannot
be expressed in terms of elementary functions. They carry the name of Fresnel integrals,
after the French physicists who used them first in his works on optics (the theory of
diffraction, to be more specific)1.

The catenary. For the catenary, the natural equation is

R = a +
s2

a
, (3.2.8)

where a is a non-vanishing constant. Again, instead of integrating directly, to get the
contingency angle, we introduce, first, the new parameter t through the relations

s = a tan t, R =
a

cos2 t
. (3.2.9)

Then the contingency angle will be

α ≡

∫
1

R(s)
ds =

∫
cos2 t · a
a · cos2 t

dt = t.

The coordinates are, now, easy to find in terms on the new parameter:

x =
∫

cosαds =
∫

a cos t
cos2 t

dt = a
∫

1
cos t

dt = ln
(
1 + sin t

cos t

)
,

and, analogously,

y = a
1

cos t
.

It is not difficult to check that one can eliminate the parameter t from the previous two
equation and one gets the usual explicit equation of the catenary, i.e.

y = a cosh
x
a
. (3.2.10)

1According to Gino Loria, in fact, these integrals were first considered by Euler, in 1781.
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Figure 3.2: The catenary

The involute of the circle. Let us start with the natural equation

R2 = 2as. (3.2.11)

We introduce a new parameter, t, such that

s =
at2

2
, R = at.

Then the contingency angle is

α =

∫
1
R

ds =
∫

1
at
· at dt = t,

therefore
x =

∫
cosα ds =

∫
at cos t dt = a(cos t + t sin t)

and
y =

∫
sinα ds =

∫
at sin t dt = a(sin t − t cos t),

which are, indeed, the parametric equations of the involute of the circle.

The tractrix. Finally, we start with the natural equation

R2 + a2 = a2e−2s/a, (3.2.12)

where a is a non-vanishing constant. We introduce the parameter t such that

e−
s
a =

1
cos t

, R = a tan t.
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Figure 3.3: The tractrix

Then
α =

∫
1
R

ds =
∫

1
a tan t

(−a tan t) dt = −t,

therefore
x =

∫
cosα ds =

∫
cos t(−a tan t) dt = a cos t

and

y =
∫

sinα ds =
∫

sin t · a · tan t dt = a
(
ln

1 + sin t
cos t

− sin t
)
.



Problems

1. Write the equations of the geometric locus of the points for which the product of their
distances to two fixed points F1 and F2, with d(F1, F2) = 2b, is a constant quantity,
equal to a2 (the curve is called a Cassini oval).

2. We consider a circle of diameter OA = 2a and its tangent at the point A. Through the
point O passes a half-line OC, where C is the intersection point between the half-line
and the circle. On this half-line one takes a segment OM, of length BC, where B is the
intersection point between the half-line and the tangent to the circle at A. If we let the
half-line OC rotate around the point O, then the point M describe a curve, called the
Diocles’ cissoid. Find the equations of this curve.

3. An arbitrary half-line OE, starting from the origin O, intersects at the points D and E
the circle

x2 +

(
y −

a
2

)2
=

a2

4
and its tangent at C, the opposite of O on the circle. We draw, through the points D and
E, two straight line, parallel to the axes Ox and Oy, respectively. The two lines intersect
at M. Find the equations of the geometrical locus of M ( the witch of Maria Agnesi).

4. A point M is moving uniformly on a straight line ON, which is rotating with con-
stant angular velocity around the point O. Find the equations of the trajectory of M
(Archimede’s spiral).

5. A straight line OL rotates around the point O with a constant angular velocity ω. A
point M moves along the line OL with a speed proportional to the distance OM. Find
the equation of the curve described by the point M (the logarithmical spiral).
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6. A straight line segment, of constant length, equal to 2a, moves on the plane, keeping
its ends, A and B, on the axes of a rectangular. coordinate system. We construct the
perpendicular OM from the origin of coordinates on this (M ∈ AB). Write the equation
of the geometrical locus of the point M (the four petals rosette).

7. On a fixed circle of radius a, one takes an invariable point O. A ray with the origin at
O rotates around O and intersects the circle in a variable point A. On this ray one takes
two points M1 and M2, symmetrical with respect to A such that AM1 = AM2 = 2a. Find
the equations of the curve described by the points M1 and M2 (the cardioid).

8. We take a fixed point O on the circle r = 2a cosϕ and a variable ray OM, with the
origin at O. Let A be the point of intersection between the ray and the circle. We take on
the ray two points M1 and M2, symmetrical with respect to A, such that AM1 = AM2 =

2b. Write down the equations of the geometrical locus described by M1 and M2 when
the ray rotates around O (the Pascal’s limaçon). What curve do we get for a = b?

9. The straight line x = a cuts the Ox-axis at the point A and an arbitrary ray OB at the
point B. On the ray we take two points M1 and M2, symmetrical with respect to B, such
that BM1 − BM2 = AB. Write down the equations of the geometrical locus described by
the points M1 and M2 when the ray rotates around the origin (the strophoid).

10. Through the point E
(
a, π2

)
, given through its polar coordinates, one constructs a

straight line parallel to the polar axis. A variable ray OK intersects this line at the point
K. On the ray one takes two points M1 and M2, symmetrical with respect to the point
K, such that KM1 = KM2 = l. Write down the equations of the geometrical locus of the
points M1 and M2 (the Nicomede’s conchoid).

11. The ends of a straight line segment of constant length AB = a slide on the axes
of a rectangular coordinate system. The straight lines AC and BC are parallel to the
coordinate axes and they intersect each other at the point C. Find the equations of the
geometrical locus of the foot M of the perpendicular drawn from C on the straight line
AB ( the astroid).

12. A circle of radius a rules without sliding on a straight line. Find the parametrical
equations of the curve described by a point invariably linked to the circumference of the
circle (the cycloid).

13. A circular disk of radius a rules without sliding on a straight line. Find the paramet-
rical equations of the curve described by a point M, invariably linked to the disk, lying
at a distance d from the centre of the circle (for d < a the curve is called the shortened
cycloid, while for d > a — the lengthened cycloid).
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14. A circular disk of radius r rules without sliding on a circle of radius R, at its exterior.
Find the parametrical equations of a point M, invariably linked to the circumference of
the mobile disk (the epicycloid).

15. A circular disk of radius r rules without sliding on a circle of radius R, at its interior.
Find the parametrical equations of a point M, invariably linked to the circumference of
the mobile disk (the hypocycloid).

16. Find the equation of the tangent and the equation of the normal for the following
curves:

a) r = a cos ti + b sin tj (the ellipse);

b) r =
a
2

(
t +

1
t

)
i +

b
2

(
t −

1
t

)
j (the hyperbola);

c) r = a cos3 ti + a sin3 tj (the astroid);

d) r = a(t − sin t)i + a(1 − cos t)j (the cycloid);

e) r = aϕ cosϕi + aϕ sinϕj (the Archimede’s spiral);

f) r =
at

1 + t3 i +
at2

1 + t3 j (Descartes’ folium);

g) r =
a

1 + t2 i +
a

t(1 + t2)
j (Diocles’ cissoid).

17. Find the equation of the tangent and the equation of the normal to the curves:

a) x2(x + y) − a2(x − y) = 0 at the point (0, 0);

b) 2x2 − x2y2 − 3x + y + 7 = 0 at the point (1,−2);

18. The sides of a right angle are tangent to the astroidx = 3
4 R cos t

4 +
1
4 R cos 3t

4

y = 3
4 R sin t

4 −
1
4 R sin 3t

4

.

Find the geometrical locus of the vertex of this angle when its sides occupy all the pos-
sible positions, remaining perpendicular to each other and tangent to the astroid.
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19. Show that the Bernoulli’s lemniscate

(x2 + y2)2 − 2a2(x2 − y2) = 0

is the set of the symmetrical points of the centre of an equilateral hyperbola with respect
to the tangents to this hyperbola.

20. At which point the tangent to the parabola y = x2 makes an angle of 45◦ with the
x-axis?

21. Show that the inclination angle ϕ of the tangent to the curve

y = x5 + 2x3 + x − 1

on the x-axis belongs to the interval π
4 ≤ ϕ ≤

π
2 .

22. Find the equations of the tangents to the curve

y =
1

1 + x2

at the points where the curve intersects the hyperbola

y =
1

1 + x

23. Show that the curves

y = a sin
x
a
, y = a tan

x
a
, y = a ln

x
a
, a ∈ R,

intersect the x-axis under the same angle, for any value of the parameter a, provided all
the functions involved are defined for the respective value.

24. Find the tangents to the astroid

x
2
3 + y

2
3 = a

2
3

which are the most distant from the origin of the coordinates.

25. Find the intersection angle between two coaxial parabolas if the vertex of each one
coincides with the focus of the other one.
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26. Show that all the normals to the curvex = a(cos t + sin t)
y = a(sin t − cos t)

lie at the same distance with respect to the origin.

27. Show that the segment from the normal to the curvex = 2a sin t + a sin t cos2 t
y = −a cos3 t

intercepted between the coordinate axes has constant length, equal to 2a.

28. It is possible to draw two pairs of tangents to the Bernoulli’s lemniscate (x2 + y2)2 =

a2(x2 − y2), parallel to a given direction. Show that the straight lines connecting the
tangency points of each pair intercept an angle of 120◦.

29. Prove that the circles

x2 + y2 + a1x + b1y + c1 = 0

x2 + y2 + a2x + b2y + c2 = 0

intersect each other under a right angle iff

a1a2 + b1b2 = 2(c1 + c2).

30. Show that if all the normals to a given curve are passing through the same point,
then the curve is an arc of circle.

31. Find the equation of the curve from whose points a given parabola is seen under a
constant angle, α. Which curve do we get for α = π

2 ?.

32. Find the envelope of a family of straight lines passing through the extremities of a
pair of conjugates diameters of an ellipse.

33. Find the envelope of a family of straight lines which determine on a right angle a a
triangle of constant area.

34. Find the envelope of a family of straight lines which determine on a right angle a a
triangle of constant perimeter.
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35. Find the envelopes of the families of curves

a) r = (t2 + λ) i + (t3 + λ) j;

b) r = (t2 + λ) i + t3 j.

36. Let O be the centre of an equilateral hyperbola M – an arbitrary point on the hy-
perbola. The segment OM is projected on the assymptotes of the hyperbola and on the
projections, as semiaxes, one constructs ellipses. Find the envelope of the family of
ellipses obtained this way.

37. There are given two concentrical circles, of radii a abd b, respectively. One con-
structs a family of circles, with the centres on the circle of radius b, their radii being,
all of them, equal to a, and a second family of circles, this time with the centres on the
circle of radius a and having the radii equal to b. Show that the two families of circles
have the same envelope and find this envelope.

38. Find the envelope of the family of circles having as diameters the chords of a
parabola, passing through the focus of the parabola.

39. A radius vector of an ellipse projects on two conjugate diameters of the ellipse and
on the projections, as semiaxes, one builds ellipses. Find the envelope of the family of
ellipses obtained this way.

40. Find the envelope of a family of circles with the centers on a given ellipse and
passing through the same focus of the ellipse.

41. Find the envelope of the family of curves

x2

λ
+

y2

µ
= 1,

where λ + µ = 1.

42. A vertex of a plane curve is a point of the curve at which the radius of the osculating
circle is stationary. Find the vertices of the curve y = ln x.

43. Find the osculating circle of minimum radius of the equilateral hyperbola xy = 1.

44. Find the radius of the osculating circle at an arbitrary point of the conical section

a11x2 + 2a12xy + a22y2 + 2a1x + 2a2y + a = 0.
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45. Let M be an arbitrary point of the cycloidcycloid and P – the corresponding point of
the generating circle. We extend the segment MP with a distance PC = MP. Show that
C is the center of the osculating circle of the cycloid at M.

46. Compute the radius of the osculating circle of the hyperbola x2

a2 −
y2

b2 = 1 at one of
its vertices and give a geometrical method for the construction of this osculating circle.
Consider the particular case of the equilateral hyperbola x2 − y2 = a2.

47. We consider a curve (γ) given through the vectorial equation r = r(t), such that the
function r is defined and at least three times continuously differentiable on an interval
[a, b], while r′ × r′′ , 0 on this interval. The vector

νa = 3r′′ × (r′ × r′′) − r′ × (r′ × r′′′)

is called the directing vector of the affine normal of the curve (γ) at the considered point.
Show that if at a point M0 of the curve (γ) this vector is not perpendicular on the tangent
to the curve at this point, then the osculating circle of the curve at the point M0 intersects
the curve.

48. Find the directing vector of the affine normal for the curves:

a) r = a cos ti + b sin tj (the ellipse);

b) r =
a
2

(
t +

1
t

)
i +

b
2

(
t −

1
t

)
j (the hyperbola);

c) y = ax2 (the parabola);

d) y = ln x

and find the position of the osculating circle with respect to the curve in each case.

49. Show that the circle cercul (x−a)2+(y−a)2− 8a2

9 = 0 and the parabola
√

3x+
√

3y =
2
√

a have a third order contact at the point
(

a
3 ,

a
3

)
.

50. Find the curvature radii of the following curves:

a) y = sin x at the vertex;

b)

x = (1 + m) cos mt − am cos(1 + m)t
y = (1 + m) sin mt − am sin(1 + m)t

(the epicycloid);

c) y = cosh x
a (the catenary);
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d) x2y2 = (a2 − y2)(b + y)2 (the conchoid);

e) r = a cos3 t i + a sin3 t j (the astroid).

51. Find the evolutes of the following curves:

a) r = a cos t i + b sin t j (the ellipse);

b) r = x i + ax2 j (the parabola);

c) r =
a
2

(
t +

1
t

)
i +

b
2

(
t −

1
t

)
j (the hyperbola);

d) r = a(t − sin t)i + a(1 − cos t)j (the cycloid);

e) r = a cos3 ti + a sin3 tj (the astroid).

52. Find the equation of the evolute of the curve

R = r −
r′

|r′|

t∫
0

|r′|dt.

53. Find the involute of a circle.

54. Find the involute of the parabola x2 = 2py.

55. Find the parametrical equations of the curves having the following natural equations:

a) R = as;

b)
s2

a2 +
R2

b2 = 1;

c) RS = a2;

d) R = a +
s2

a
;

56. Show that the curve 
x = sin 2ϕ,
y = 1 − cos 2ϕ,
z = 2 cosϕ

lies on a sphere.
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57. Consider the curve obtained by intersecting the sphere x2 + y2 + z2 = a2 with the
cylinder x2 + y2 = ay (the Viviani’s window).

a) Find a set of parametrical equations of the curve.

b) Find the curvature and the torsion at an arbitrary point of the curve.

c) Find the projection of the curve on the coordinate plane yOz.

58. Consider the curve 
x = p

√
p2 − q2 cos t

y = q
√

p2 − q2(1 + sin t)
z =

√
p2 − q2(1 + sin t)

where p, q are constant, while p > q.

1. Show that this curve lies on the elliptical paraboloid
x2

p2 +
y2

q2 = 2z.

2. Show that this curve is a circle, by computing its curvature and torsion.

3. Check that the osculating plane to the curve is one of the planes of circular section
in the paraboloid.

59. Find the projection of the coordinate plane xOy of the intersection curve between
the paraboloid z = x2 + y2 and the plane x + y + z = 1.

60. Find the equation of the tangent to the curve
x = t4

4 ,

y = t3
3 ,

z = t2
2

parallel to the plane x + 3y + 2z = 0.

61. Write the equation of the tangent to the curvex2 + y2 = 10,
y2 + z2 = 25

at the point (1, 3, 4).
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62. Show that the tangents to the curve

x = a(sin t + cos t), y = a(sin t − cos t), z = be−t

intersects the coordinate plane xOy after the circle

x2 + y2 = 4a2

63. Find the equation of the normal plane at an arbitrary point of the curvez = x2 + y2,

y = x.

64. Show that the normal planes to the curve
x = a cos t,
y = a sinα sin t,
z = a cosα sin t

are passing through the straight linex = 0,
z + y tanα = 0.

65. Show that (τ,β, β̇) = χ.

66. Show that (β̇, β̈,
...
β) = χ5

(
k
χ

)
.

67. Show that (τ̇, τ̈,
...
τ ) = k5

(
χ

k

)
.

68. Show that if the principal normals to a curve form a constant angle with the direction
of the vector e, then

d
ds
=

k2 + χ2

k
d
ds
χ

k

+ χ = 0

and conversely: if the previous relation is verified, then the principal normals to the
curve form a constant angle with the direction of a vector. Find this vector.

69. Show that if all the osculating planes to a given curve (which is not a straight line)
contain the same vector, then the curve is a plane curve.



Part II

Surfaces





CHAPTER 4

General theory of surfaces

4.1 Parameterized surfaces (patches)

Definition. A regular parameterized surface (patch) in R3 is a smooth map r : U → R3,
(u, v) → r(u, v), where U is a domain (an open, connected subset) in R2, while r is
subject to

r
′

u × r
′

v , 0. (4.1.1)

The condition (4.1.1) is called the regularity condition.

A parameterized surface is usually denoted by (U, r), (U, r = r(u, v)) or just r =
r(u, v).

Definition. The set r(U) ⊂ R3 is called the support of the parameterized surface (U, r).

Remark. Usually, one and the same point of the support of a parameterized surface
(U, r) may correspond to several distinct pairs (u, v), since the map r is not assumed to
be injective.

Definition. Two parameterized surfaces (U, r) and (V, r1) are called equivalent if there
is a diffeomorphism λ : U → V such that r = r1 ◦ λ.

Remark. The supports of two equivalent parameterized surfaces always coincide.
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Examples. 1. If U = R2, while r = r0 + ua + vb, a × b , 0, the the support of the
parameterized surface is the plane passing through r0, perpendicular to the vector
a × b. This parameterized surface is called a plane.

2. Let U = {(u, v) ∈ R2|π/2 < u < π/2, 0 < v < 2π} and

r(u, v) = (R cos u cos v,R cos u sin v,R sin u).

The support of this parameterized surface is the sphere of radius R, centred at the
origin of R3, with a meridian removed. The parameters u and v are analogues of
the geographical coordinates.

3. Let U = R2, r = r0 + ua + v3b, a × b , 0. The support of this parameterized
surface is identical to the support of the parameterized surface from the example
1), although the two surfaces are not equivalent, since the map (u, v) → (u, v3) is
not a diffeomorphism.

4.2 Surfaces

Definition. A subset S ⊂ R3 is called a regular surface if each point a ∈ S has an open
neighbourhood W in S such that there is a parameterized surface (U, r) with r(U) = W,
while the map r : U → W is a homeomorphism. The pair is called a local parameter-
ization of the surface S around the point a, while the support r(U) is called the domain
of the parameterization. A surface S which has a global parameterization (i.e. a local
parameterization (U, r) for which r(U) = S ) is called a simple surface.

4.2.1 Representations of surfaces

The same kind of representations we used for the case of curves are, equally, available
for surfaces.

Parametrical representation. If S is a surface and (U, r) is a local parameterization
of S , then, if r(u, v) = (x(u, v), y(u, v), z(u, v)), then the equations

x = x(u, v)
y = y(u, v)
z = z(u, v)

, (u, v) ∈ U,

are called the parametric equations of the surface. We would like to emphasize, once
more, that these are only local equations, they cannot be used to describe all the points
of the surface, unless we are dealing with a global parameterization of a simple surface.
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Explicit representation. If f : U → R is a smooth function, where U ⊂ R2 is a
domain, then its graph, S = {(x, y, z) ∈ R3 | z = f (x, y)} is a simple surface. Indeed, we
have the global parameterization r : U → R3, r(u, v) = (u, v, f (u, v)).

Implicit representation. Let F : V → R, with V ⊂ R3 an open set, be a smooth
function. We denote by S = {(x, y, z) ∈ R3 | F(x, y, z) = 0} the 0-level set of F. If, at
each point of S , the vector

grad F =
{
∂F
∂x
,
∂F
∂y
,
∂F
∂z

}
is different from zero, then S is a surface. Indeed, for instance, at (x0, y0, z0) ∈ S , we
have F′z(x0, y0, z0) , 0, then, from the implicit function theorem, there is an open (in the
topology ofR3 ) neighbourhood M of (x0, y0, z0) such that the set M∩S (which is an open
neighbourhood of (x0, y0, z0), this time in the topology of S ) is the graph of a smooth
function z = f (x, y), therefore, according to the previous paragraph, there is a local
parameterization of S around the point (x0, y0, z0). We note that this parameterization is
global for M ∩ S but, generally, it is not so for the entire S . Even if F′z is different from
zero on the entire S , it is still not sure that the function f can be defined globally. Thus,
in general, unlike that case of the surfaces given explicitly, the implicitly given surfaces
are not simple.

Examples. 1. The plane Π passing through r0 and having the direction given by the
vectors a and b, with a×b , 0 is a simple surface with the global parameterization
r(u, v) = r0+ua+vb. In projection on the coordinate axes, the parametric equations
of the plane will be 

x = x0 + uax + vbx

y = y0 + uay + vby

z = z0 + uaz + vbz

, (u, v) ∈ R2.

2. Revolution surfaces
Let C be a curve in the plane xOz, which does not intersect the z-axis, and S – the
subset of R3 obtained by rotating C around the z-axis. Let v be the rotation angle
of the plane xOz and a′ – the point of S obtained by rotating the point a ∈ C by an
angle v0. Let (I, ρ = ρ(t)) be a local parameterization of the curve C around the
point a, ρ(t) = (x(t), z(t)). The we get the local parameterization os S around a′,

r(t, v) = (x(t) cos(v + v0), x(t) sin(v + v0), z(t)),

defined on the domain U = I ×
(
−π2 ,

π
2

)
.
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3. The sphere. Let F : R3 → R, F(x, y, z) = x2 + y2 + z2 − R2. F is, obviously, a
smooth function and its 0-level set

S 2
R = {(x, y, z) ∈ R3 | F(x, y, z) = 0}

is the sphere of radius R, with the centre at the origin. The gradient of F is

grad F = {2x, 2y, 2z}

and, obviously, it does not vanish on the sphere S 2
R, therefore this sphere is a reg-

ular surface. Note that S 2
R is not simple since it is compact subset of R3, therefore

it cannot be homeomorphic to an open subset of R2, which is not compact.

4. The torus. We choose now F : R3 → R,

F(x, y, z) = (
√

x2 + y2 − a)2 + z2 − b2, 0 < b < a.

Its 0-level set,
T 2 = {(x, y, z) ∈ R3|F(x, y, z) = 0}

is called the 2-dimensional torus. If we compute the derivatives of F with respect
to the coordinates, we get

F′x = 2
( √

x2 + y2 − a
)

x√
x2+y2

F′y = 2
( √

x2 + y2 − a
)

y
√

x2+y2

F′z = 2z

,

therefore the gradient of F vanishes iff
x = y = z = 0 or
x2 + y2 = 0, y = 0, z = 0 or
x = 0, x2 + y2 = a2, z = 0 or
x2 + y2 = a2, z = 0

.

It is easy to check that grad F is different from zero on T 2, therefore the torus is a
surface (again, it is compact, therefore it cannot be simple).

The torus can also be obtained by rotating the circle (x − a)2 + z2 = b2 (lying in
the plane xOz) around the axis Oz.
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Figure 4.1: The torus

4.3 The equivalence of local parameterizations

Definition. Let S be a surface, (U, r) – a local parameterization and W = r(U). Then the
map r−1 : W → U is a bijection, associating to each point of W a pair of real numbers
(u, v) ∈ U. This correspondence is called a curvilinear coordinate system on S or a
chart on S .

Remark. We ought to mention here that in many books the fundamental objects used
to describe a surface are not the local parameterizations, but the charts. Of course,
the two approaches are completely equivalent, but they came from different directions.
The description of surfaces by using local parameterizations has, probably, the origin in
mathematical analysis, where the surfaces are thought off either as images of functions
or as graphs of functions, in any case, the central objects is the function. The “charts’s
approach” has the origin in chartography. In fact, assigning a local chart to a surface
simply means to apply that surface on a portion of a plane, in other words, what is meant
is the construction of a “map” of the surface and, actually, in the advanced differential
geometry, a collection of charts that cover the entire surface is called an atlas, exactly as
happens in chartography.

Theorem 4.3.1. (of the parameters’ change) Let (U, r) and (U1, r1) be two local parame-
terizations of a surface S and r(U) = r(U1). Then there is a diffeomorphism λ : U → U1
such that r = r1 ◦ λ. The diffeomorphism λ is called a parameters’ change.

Before proving the theorem, some remarks are in order. If a change of parameters
λ does exist, then, from the relation r = r1 ◦ λ, we should have, of course, λ = r−1

1 ◦ r.
The real difficulty is to show that λ and its inverse are smooth. Although r is smooth,
r−1 is not1, because its domain, r1(U1), is not an open subset of the Euclidean space R3.

1not in the classical sense, at least
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We will show, however, in the following lemma, that, locally, r−1
1 is the restriction of a

smooth function. We ought to emphasize, however, that this representation of r−1
1 is only

local: in general, r−1
1 cannot be written, globally, as the restriction of a single smooth

function, defined on an open set (with respect to the topology of R3), which contains the
set r1(U1).

Lemma. Let (U, r) be a local parameterization of the surface S , r(U) = W and r−1 :
W → U – the inverse map. Then, for each point a ∈ W there is an open set (in the
topology of R3) B 3 a and a smooth map G : B→ U such that r−1|W∩B = G|W∩B.

Proof of the lemma. Let r(u, v) = ( f1(u, v), f2(u, v). f3(u, v)) and a = r(u0, v0). Due to the
regularity of r, the Jacobi matrix  f ′1u f ′1v

f ′2u f ′2v
f ′3u f ′3v


has the rank two. Without restricting the generality, we may assume that∣∣∣∣∣∣ f ′1u f ′1v

f ′2u f ′2v

∣∣∣∣∣∣ , 0.

Then, from the inverse function’s theorem for the map

f : (u, v) −→ (x = f1(u, v), y = f2(u, v)),

there is an open neighbourhood V of the point (u0, v0) in U and an open neighbourhood
Ṽ of the point (x0 = f1(u0, v0), y0 = f2(u0, v0)) in the plane xOy such that f : V → Ṽ
is a diffeomorphism. Since the map r : U → W is a homeomorphism, r(V) is an
open neighbourhood in S of the point a = r(u0, v0), therefore, in R3 there is an open
neighbourhood B of the point a such that r(V) = B ∩ S = B ∩ W. Let p : R3 → R2 :
(x, y, z)→ (x, y) be the orthogonal projection on the coordinate plane xOy. We are going
to show that the map G = ( f −1 ◦ p)|B : B → U is the map searched for. Indeed, G is
smooth, as a composition of smooth maps. Moreover, to each point (x, y, z) from B ∩W
corresponds a single point (u, v) = r−1(x, y, z) from V , and to each point (x, y) ∈ Ṽ – the
point (u, v) = f −1(x, y) from V . Thus, for the points (x, y, z) ∈ B ∩W, we have

r−1(x, y, z) = f −1(x, y) = f −1(p(x, y, z)) = G(x, y, z).

�
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Proof of the theorem. Let (U, r) and (U1, r1) – two local parameterizations of the surface
S such that r(U) = r1(U1) = W. We consider the map λ = r−1

1 ◦ r : U → U1. Since
r1 : U1 → W is a homeomorphism, the same is true for r−1

1 : W → U1 and, thus, λ is
a homeomorphism, as a composition of two homeomorphisms. We have to prove only
that λ and λ−1 are smooth. To prove the smoothness of λ este it is enough to prove that
each point (u0, v0) ∈ U has an open neighbourhood V ⊂ U such that λ|V is smooth. We
apply the previous lemma to the parameterization (U1, r1) at a point a = r1(λ(u0, v0)).
Let G : B → U1 be the smooth map for which r−1

1 |B∩W = G|B∩W and V = r−1(B ∩W).
Then λ|V = r−1

1 ◦r|V = (G◦r)|V and, therefore, λ|V is smooth, as a restriction of a smooth
map. The smoothness of λ−1 is proved in the same way, replacing the parameterization
r1 by the parameterization r. �

Locally, each surface is the support of a parameterized surface. The converse is not
true, i.e. the support of an arbitrary parameterized surface is not a surface. Still, if we
choose an arbitrary parameterized surface, by restricting the domain, we can obtain a
parameterized surface whose support is a regular surface. Thus, we have:

Theorem 4.3.2. Let (U, r) be a regular parameterized surface. Then each point (u0, v0) ∈
U has an open neighbourhood V ⊂ U such that the r(V) is a simple surface in R3, for
which the pair (V, r|V ) is a global parameterization.

Proof. The only extra condition we have to impose on V is that the map r|V : V → r(V)
to be a homeomorphism. Let r(u, v) = ( f1(u, v), f2(u, v), f3(u, v)). Without restricting the
generality, we may assume that the Jacobian of the map f : (u, v) → (x = f1(u, v), y =
f2(u, v)) is different from zero at (u0, v0). Then, from the inverse function’s theorem,
there is an open neighbourhood V ⊂ U of the point (u0, v0) and an open neighbourhood
Ṽ of the point (x0, y0) = f (u0, v0) such that the map F : V → Ṽ is a diffeomorphism. We
shall prove first the injectivity of the map r|V : V → r(V). Let (u1, v1), (u2, v2) ∈ V , such
that r(u1, v1) = r(u2, v2). Then, in particular,

f1(u1, v1) = f1(u2, v2) şi f2(u1, v1) = f2(u2, v2),

i.e. f (u1, v1) = f (u2, v2). Or, f is diffeomorphism, so it is, in particular, an injective
map, therefore (u1, v1) = (u2, v2). The map r : U → R3 is continuous, so it is continuous
also its restriction r|V : V → R3. Since on r(V) we take the subspace topology, the map
r|V : V → r(V) is, also, continuous. To prove the continuity of the inverse map, we note
that its is a composition of the following continuous maps: (x, y, z) ∈ r(V) → (x, y) ∈
Ṽ → (u, v) = f −1(x, y) ∈ V , as seen in the proof of the lemma. �
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4.4 Curves on a surface

We shall say that a smooth parameterized curve (I, ρ = ρ(t)) lies on a surface S if its
support ρ(I) is included in S . It is easy to describe the parameterized curves whose
support is contained into the domain of a parameterization (U, r) of the surface S .

Theorem 4.4.1. Let (U, r) be a parameterization of the surface S and (I, ρ = ρ(t)) a
smooth parameterized curve whose support is included in r(U). Then there is a single
smooth parameterized curve (I, ρ̃) on U such that

ρ(t) ≡ ρ(ρ̃(t)). (4.4.1)

Conversely, any smooth parameterized curve ρ̃ on U defines, through the formula (4.4.1),
a smooth parameterized curve on r(U). The regularity of ρ at t is equivalent to the
regularity of ρ̃ at t.

Proof. Since the map r : U → r(U) is a homeomorphism, while ρ(I) ⊂ r(U), from the
formula (4.4.1), we can obtain ρ̃, by putting

ρ̃ = r−1 ◦ ρ.

Clearly, ρ̃ is continuous, as a composition of two continuous maps. We shall check now
that ρ̃ is, actually, smooth. Let t ∈ I, then ρ(t) ∈ r(U). According to the lemma from
the previous paragraph there is an open neighbourhood B of the point ρ(t) in R3 and a
smooth map G : B → U such that r−1|B∩r(U) = G|B∩r(U). Therefore, the map ρ̃, can be
represented, in the neighbourhood of the point t, as a composition G ◦ ρ of smooth maps
and, thus, it is smooth. The converse affirmation can be proved even simpler, because
we have

ρ = r ◦ ρ̃

and, as r and ρ̃ are smooth, so is ρ.
To verify the equivalence of the regularity conditions for ρ and ρ̃, we consider the

components of the path ρ̃:
ρ̃ = (u(t), v(t)).

Then the equality (4.4.1) becomes

ρ(t) = r(u(t), v(t)).

Differentiating this relation, we get

ρ′(t) = r
′

u · u
′(t) + r

′

v · v
′(t).
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Since the vectors r′u and r′v are not colinear (because the surface, as always, is supposed
to be regular), from the previous relation it follows that ρ′(t) = 0 iff u′(t) = 0 and
v′(t) = 0, i.e. iff ρ̃

′

(t) = 0. �

Definition. The parameterized curve ρ̃(t) on the domain U is called the local repre-
sentation of the parameterized curve ρ(t) in the local parameterization (U, r), while the
equations u = u(t)

v = v(t)

are called the local equations of ρ(t) in the considered parameterization.

Example. Let (U, r = r(u, v)) a local parameterization S and (u0, v0) ∈ U. We consider,
in r(U) ⊂ S the paths defined by the local equationsu = u0 + t

v = v0
(4.4.2)

and u = u0

v = v0 + t
(4.4.3)

It is easy to see that the supports of these paths lie, indeed, on S . Through each r(u0, v0) ∈
r(U) pass exactly two such curves, one of each kind. The parameterized curves are called
coordinate lines or coordinate curves on the surface S , in the local parameterization
(U, r).

4.5 The tangent vector space, the tangent plane and the nor-
mal to a surface

Let us denote, for any a ∈ R3, by R3
a the space of bound vectors with the origin at a. This

is, obviously, a 3-dimensional vector space, naturally isomorphic to R3.

Definition 4.5.1. A vector h ∈ R3
a is called a tangent vector to the surface S at the point

a if there is a parameterized curve (I, ρ(t)) on S and a t0 ∈ I such that ρ(t0) = a and
ρ′(t0) = h. Thus, a tangent vector to a surface is just a tangent vector to a curve on the
surface.

We shall denote by TaS the set of all the tangent vectors to the surface S at a ∈ S .
The following lemma is trivial, but it plays an important role in the sequel.
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Lemma. Let ρ = ρ(t) be a parameterized curve on S , given by the local equations
u = u(t), v = v(t), with respect to a local parameterization (U, r) of S . Then we have the
relation

ρ′(t) = u′(t)r
′

u(u(t), v(t)) + v′(t)r
′

v(u(t, v(t)). (4.5.1)

Proof. We just differentiate the relation ρ(t) = r(u(t), v(t)) with respect to t. �

Theorem 4.5.1. The set TaS is a 2-dimensional vector subspace of R3. If (U, r) is a local
parameterization of S , while a = r(u0, v0), then the vectors r′u(u0, v0) and r′v(u0, v0) make
up a basis of this subspace, called the natural basis or the coordinate basis of the tangent
space.

Proof. Let (U, r) be a local parameterization of S , with a = r(u0, v0). if the parame-
terized curve (I, ρ(t)) is on the surface and ρ(t0) = a, then, restricting, if necessary, the
interval I, we may assume that ρ(I) ⊂ r(U), while its local equations in this parameter-
ization of the surface are u = u(t), v = v(t). Then, from the formula (4.5.1), it follows
that

ρ′(t0) = u′(t0)r
′

u(u0, v0) + v′(t0)r
′

v(u0, v0).

Conversely, any vector of the form

h = αr
′

u(u0, v0) + βr
′

v(u0, v0)

is tangent to the parameterization curve given by the local equationsu = u0 + αt
v = v0 + βt

,

which is a curve on S , passing through a for t0, therefore h ∈ TaS . �

The vector space TaS is called the tangent space to S at a. As we mentioned before,
R3

a is naturally2 isomorphic to R3. Based on this isomorphism, we may consider, when
is convenient, that TaS is, in fact, a subspace of R3 rather than of R3

a. In this case, TaS
is a vectorial plane, in the sense that it passes through the origin of R3

a; then the plane
passing through a and having TaS as directing plane (i.e. the plane parallel to TaS ,
passing through a), is called the tangent plane to S at the point a and it is denoted by
ΠaS .

2In this context, naturally means that there is an isomorphism which is independent of the choice of
bases in the two vector spaces.
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If r(u, v) = (x(u, v), y(u, v), z(u, v)) is a local parameterization of the surface S and
a = r(u0, v0) = (x0, y0, z0) ∈ S , then, clearly, the equation of the tangent plane of S at a
should be ∣∣∣∣∣∣∣∣∣

X − x0 Y − y0 Z − z0
x′u y′u z′u
x′v y′v z′v

∣∣∣∣∣∣∣∣∣ = 0.

Let, now, (U, r = r(u, v)) be a parameterization of S and (u0, v0) ∈ U. If we modify
the arguments by ∆u = α∆t, ∆v = β∆t, with α, β ∈ R fixed, the Taylor’s formula gives:

r(u0 + ∆u, v0 + ∆v) = r(u0, v0) + ∆t · (αr
′

u(u0, v0) + βr
′

v(u0, v0)) + ∆t · ε,

with lim
∆t→0
ε = 0. Using this formula, we shall give another characterization of the tangent

plane. Let Π be a plane in R3, passing through a = r(u0, v0), d – the distance from the
point ∆a = r(u0 + ∆u, v0 + ∆v) to the plane Π, and h – the distance between the points a
and ∆a.

Theorem 4.5.2. The plane Π is the tangent plane to the surface S at the point a iff for
any modification of the arguments of the form ∆u = α∆t, ∆v = β∆t, with α, β ∈ R,
α2 + β2 , 0, we have

lim
∆t→0

d
h
= 0, (4.5.2)

i.e. the plane and the surface have a first order contact at a.

Proof. Let n be the versor of the normal to the plane Π, ∆r = r(u0 + ∆u, v0 + ∆v) −
r(u0, v0). Then d = ∆r · n, h = ‖∆r‖. Replacing ∆r by its expression, we get:

lim
∆t→0

d
h
= lim
∆t→0

∆t · (αr′u(u0, v0) + βr′v(u0, v0) + ε) · n
‖αr′u(u0, v0) + βr′v(u0, v0) + ε‖

= ±
(αr′u(u0, v0) + βr′v(u0, v0)) · n
‖αr′u(u0, v0) + βr′v(u0, v0)‖

,

therefore
lim
∆t→0

= 0 ⇐⇒ (αr
′

u(u0, v0) + βr
′

v(u0, v0)) · n = 0. (4.5.3)

Necessity. If Π is the tangent plane, then the vectors r′u and r′v, as directing vectors of Π,
are orthogonal to n, therefore the relation (4.5.3) is fulfilled.
Sufficiency. Let us assume, now, that (4.5.3) is fulfilled. Choosing α = 1, β = 0, we
get r′u · n = 0. In the same way, for α = 0, β = 1, one obtains r′v × n = 0. Thus, n is
orthogonal to the tangent plane, i.e. Π is the tangent plane. �

Definition 4.5.2. The straight line passing through a point of a surface, perpendicular to
the tangent plane to the surface at that point, is called the normal to the surface at the
considered point.
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Thus, if (U, r) is a parameterization of the surface around a point a = r(u0, v0) =
(x0, y0, z0) ∈ S , then the a directing vector of the normal will be r′u(u0, v0) × r′v(u0, v0),
which means that the equations of the normal at the point a will be given by:

X − x0∣∣∣∣∣∣y′u(u0, v0) z′u(u0, v0)
y′v(u0, v0) z′v(u0, v0)

∣∣∣∣∣∣
=

Y − y0∣∣∣∣∣∣z′u(u0, v0) x′u(u0, v0)
z′v(u0, v0) x′v(u0, v0)

∣∣∣∣∣∣
=

Z − z0∣∣∣∣∣∣x′u(u0, v0) y′u(u0, v0)
x′v(u0, v0) y′v(u0, v0)

∣∣∣∣∣∣ .
(4.5.4)

To construct the tangent plane and the normal to a surface given in an implicit rep-
resentation, the following result is very useful.

Theorem 4.5.3. At the point (x0, y0, z0) of the surface given through the equation

F(x, y, z) = 0

the vector grad F0 = {F′x(x0, y0, z0), F′y(x0, y0, z0), F′z(x0, y0, z0)} is perpendicular to the
tangent plane to the surface at this point.

Proof. Let r(u, v) = (x(u, v), y(u, v), z(u, v)) be a local parameterization of the surface
around the point (x0, y0, z0) = r(u0, v0). Then we have the identity

F(x(u, v), y(u, v), z(u, v)) = 0,

whence, by differentiation, we get0 = F′u = F′x · x
′
u + F′y · y

′
u + F′z · z

′
u ≡ grad F · r′u

0 = F′v = F′x · x
′
v + F′y · y

′
v + F′z · z

′
v ≡ grad F · r′v

,

i.e. grad F ⊥ L(r′u, r
′

v) ≡ T(x0,y0,z0)S . �

Consequence 1. The equation of the tangent plane to the surface given by the implicit
equation F(x, y, z) = 0 at the point (x0, y0, z0) has the form

(X − x0)F′x(x0, y0, z0) + (Y − y0)F′y(x0, y0, z0) + (Z − z0)F′z(x0, y0, z0) = 0,

while the equations of the normal to the surface at the same point are

X − x0

F′x(x0, y0, z0)
=

Y − y0

F′y(x0, y0, z0)
=

Z − z0

F′z(x0, y0, z0
.

Consequence 2. For any point a of the sphere S 2
R the tangent space TaS 2

R is orthogonal
to the radius vector of the point a.
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Proof. The sphere S 2
R can be described by the equation

F(x, y, z) ≡ x2 + y2 + z2 − R2 = 0,

whence it follows
grad F = 2{x, y, z} = 2a,

therefore the radius vector is parallel to the gradient of the function F, hence it is per-
pendicular to the tangent space. �

4.6 The orientation of surfaces

Definition 4.6.1. An orientation of a surface S is a choice of an orientation in each
tangent space TaS , i.e. a choice of the unit normal vector of TaS , n(a). It is assumed,
in this context, that the map n : S → R3, a → n(a) is continuous. The surfaces on
which is is possible to define an orientation are called orientable, while those on which
an orientation has been already chosen – oriented.

Examples. a) We can define an orientation on the sphere S 2
R using the versor of the

exterior normal. It is not difficult to see that, if a is the radius point of the point
a ∈ S 2

R, then n(a) = 1
R a. Therefore, the map

n : S 2
R → R

3,

defining the orientation of the sphere can be represented as a composition of contin-
uous maps:

S 2
R

i
−→ R3

1
R
−→ R3 : a −→ a −→

1
R

a.

b) Let S be a simple surface, with the global parameterization (U, r). This surface can
be oriented by using the vector field

n(u, v) =
r′u × r′v
‖r′u × r′v‖

.

c) Let S be a surface given by the implicit equation F(x, y, z) = 0. Then the surface can
be oriented through the gradient vector field:

n(x, y, z) =
grad F
‖ grad F‖

.
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If the orientation of a surface S is given by the vector function (vector field) n(a),
then the vector field −n(a) also defines an orientation on S , called the opposite orien-
tation of the orientation given by n. If the orientable surface S is connected, then each
orientation of S should coincide to one of the two orientations just mentioned. Indeed,
if N(a) is an orientation of the surface S , then we must have N(a) = λn(a), where λ
is a continuous function on S , taking values into the finite set {−1, 1}, therefore, if S
is connected, λ has to be a constant function. Thus, a connected orientable surface has
only two distinct orientations. Of course, if the surface is not connected, there are more
orientations, corresponding to different combinations of the two possible orientations on
each connected component of the surface.

Remark. Not any surface is orientable. We consider, for instance, the support of the
parameterized surface

r(u, v) = (cos u + v cos
u
2

cos u, sin u + v cos
u
2

sin u, v sin
u
2

),

with u, v ∈ R (the Möbius’s band, see the next figure). It will be shown bellow that S
is not orientable. (It has a single side: it is possible to move continuously the origin of
the unit normal along a close path on S such that, after the “trip”, the unit normal will
change into its opposite.) Notice that S is not simple, as it might seem, because r is not
a parameterization, since it is not a homeomorphism on the image.

The non-orientability of the Möbius’s band. We consider two local parameteriza-
tions to describe the Möbius’s band:

r : T =
{

(s, t) | −
1
2
< s <

1
2
, 0 < t < 2π

}
,

r(s, t) =
(
cos t

(
1 + s cos

t
2

)
, sin t

(
1 + s cos

t
2

)
, s sin

t
2

)
and

ρ : V =
{

(u, v) | −
1
2
< u <

1
2
, −π < v < π

}
,

ρ(u, v) =
(
cos v

(
1 + u cos

v
2

)
, sin v

(
1 + u cos

v
2

)
, u sin

v
2

)
It is not difficult to see that the domain of the diffeomorphism (parameters’ change)

Φ = ρ−1 ◦ r is the set T ∗, equal to T , with the segment t = π removed. We can write Φ
explicitly as Φ(s, t) ≡ (u, v) = (ϕ1(s, t), ϕ2(s, t)), where

u = ϕ1(s, t) = s, ∀(s, t) ∈ T ∗
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and

v = ϕ2(s, t) =

t if (s, t) ∈ T ∗, 0 < t < π
π − t if (s, t) ∈ T ∗, π < t < 2π

.

The Jacobi matrix of the map Φ is, as one can readily see,

J(Φ)(s, t) ≡

∂u
∂s

∂u
∂t

∂u
∂s

∂v
∂t

 =


1 0
0 1

 if 0 < t < π1 0
0 −1

 if π < t < 2π

The supports of r and ρ are, clearly, orientable, as simple surfaces. However, admitting
that the Möbius’s band is orientable, the two local parameterizations do not define the
same orientation on it, since, as one can see from the computation we made before, the
determinant of the Jacobi matrix of the parameters’ change is not always positive.

On the other hand, as our surface is connected, if it is orientable, it can have only two
distinct orientations, in other words, any local parameterization of S should be positively
equivalent either to r or to ρ.

Let us suppose, now, that S is orientable. This means that there is a family of local
parameterizations r1, r2, . . . , which are pairwise positively equivalent and their supports
cover S . We may assume, without restricting the generality, that on the support of r all
this parameterizations are positively equivalent to r. There should be a local parameter-

Figure 4.2: The Möbius’s band

ization in the family such that its support intersects the segment t = 0. We shall suppose
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that this parameterization is r1. We may assume that the support of r1 is included into
the support of ρ (otherwise, if necessary, we may shrink the domain of r1). It follows
then that the Jacobi determinant of the map ρ−1 ◦ r1 should be either always positive or
always negative on the domain of r1. On the other hand, we have, obviously, from the
chain rule, that

J(ρ−1 ◦ r) = J(ρ−1 ◦ r1)J(r−1
1 ◦ r),

whence
det J(ρ−1 ◦ r) = det J(ρ−1 ◦ r1) det J(r−1

1 ◦ r).

Now, in the right hand side, the last determinant is always positive, since the two para-
meterizations are assumed to be positively equivalent. The first determinant, from the
hypothesis, is always positive or always negative. Thus, the right hand side has constant
sign. On the other hand, as we saw previously, the left hand side has opposed signs
on the two sides of the segment t = 0, whence the contradiction which shows that the
Möbius’s band is not orientable.

In the figure 4.6 we indicate how one can construct a Möbius band, from a strip of
paper. Another example of a non-orientable surface is the so-called Klein’s bottle (see
figure ??)

Definition. Let S be an oriented surface with the orientation n(a). A local parameter-
ization (U, r) of S is said to be compatible with the orientation n(a) if for any point
a = r(u, v) we have

n(a) =
r′u × r′v
‖r′u × r′v‖

or, which is the same, if the frame {r′u, r
′

v, n(a)} is right-handed.

4.7 Differentiable maps on a surface

Definition 4.7.1. Let S be a surface in R3. A map f : S → Rk is called differentiable or
smooth if for any parameterization (U, r) of S the map f ◦ r : U → Rk is smooth. The
map fr ≡ f ◦ r is called the expression of f în in the curvilinear coordinates (u, v) or the
local representation of f with respect to the parameterization (U, r).

Remarks. 1. On can define similarly the differentiability of maps defined on any
open subset of a surface S .

2. Any differentiable map f : S → Rk is continuous, since, locally, it can be written
as a composition of continuous maps: f = f ◦ (r ◦ r−1) = ( f ◦ r) ◦ r−1 = fr ◦ r−1.



4.7. Differentiable maps on a surface 131

Figure 4.3: Construct your own Möbius band!

Examples. a) Any constant map f : S → Rk : a → A0, A0 ∈ R
k is smooth, because

its local representation with respect to any local parameterization of S is, equally, a
constant map, hence it is differentiable.

b) If F : R3 → Rk is a smooth map, then, for any surface S the map f = F|S : S →
Rk is a smooth map. Indeed, for any local parameterization (U, r) of S the local
representation of f is fr = F ◦ r, where F and r are smooth maps, in the usual sense.
In particular, the orthogonal projections of a surface S on the coordinate axes and
planes are, all of them, smooth maps.

c) The inclusion i : S → R3 : a → a is smooth, since for any local parameterization
(U, r) of S , the local representation of i is ir = i◦r = r. (In fact, i is just the restriction
of the identity map, 1R3 and, therefore, we can also apply the previous example).

Apparently, it is quite difficult to check whether a map defined on a surface is smooth,
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Figure 4.4: Klein’s bottle

because we have to check the smoothness of its local representations with respect to all
the local parameterizations of the surface, which are, of course, infinitely many. For-
tunately, as the following theorem shows, it is enough to take only some of the local
parameterizations, such that their domains cover the surface. In particular, if the surface
is simple, it is enough to check for the global parameterization.

Theorem 4.7.1. A map f : S → Rk is smooth iff for any point a ∈ S there is a local
parameterization (U, r) of the surface S with a ∈ r(U), such that the local representation
fr = f ◦ r : U → Rk is smooth.

Proof. The necessity is obvious, since, if F is smooth, then it local representation fr is
smooth for any local parameterization (U, r) of S .

Conversely, let’s suppose that that a ∈ S is an arbitrary point of the surface and (U, r)
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is a local parameterization of S around a such that the local representation fr = f ◦ r
is smooth. Obviously, it is enough to show that then the local representation of f in
any other parameterization of S around a is, also, smooth. We choose, thus, another
parameterization, (U1, r1), around a and let W = r(U) ◦ r1(U1). Then in r−1(W) ⊂ U1,
fr1 can be represented as

fr1 = f ◦ r1 = f ◦ (r ◦ r−1) ◦ r1 = ( f ◦ r) ◦ (r−1 ◦ r1) = fr ◦ (r−1 ◦ r1).

Since both fr (from the hypothesis) and r−1 ◦ r1 (from the theorem 4.3.1) are smooth, it
follows that fr1 is, equally smooth. �

Example. Let S be a surface and (U, r) a local parameterization of S . As we explained
earlier, the map r−1 : r(U)→ R2 is nor smooth in the classical sense. The reason is that
its domain is not an open set of an Euclidean space, so the notion itself doesn’t make
sense for it. We also showed that, however, locally, r−1 is the restriction of a smooth map
defined on an open set of R3. The notion we just defined is, actually, the natural frame of
discussing this important map, which, in fact, assigns to each point of the surface (lying
in r(U), of course), a pair of coordinates. Indeed, as a map defined on an open set of
S , r−1 is smooth, as we can see easily, because the local representation of r−1 in the
parameterization (U, r) is (

r−1
)
r
≡ r−1 ◦ r = 1U .

The next natural step will be to define the notion of a smooth map between two
surface rather then from a surface to an Euclidean space. The idea is the following. Let
S 1, S 2 be two surfaces In R3. Then any map F : S 1 → S 2 can be regarded as a map
F : S 1 → R

3. More specifically, one can associate to F the map i ◦ F : S → R3, where
i : S 2 ↪→ R

3 is the inclusion.

Definition 4.7.2. Let S 1, S 2 ⊂ R
3 be two surfaces. A map F : S 1 → S 2 is called smooth

if the map F1 = i ◦ F : S 1 → R
3 is smooth.

Remarks. 1. It easy to see that any smooth between surfaces is continuous.

2. Let S 1 ⊂ R
3 a surface and G : R3 → R3 a diffeomorphism. Then S 2 = G(S 1) is,

also, a surface, while the map G|S 1 : S 1 → S 2 is smooth.

3. Let S 1, S 2 ⊂ R
3 two surfaces and F : S 1 → S 2 a map. Then F is smooth iff

for any a ∈ S 1, any local parameterization (U1, r1) of S 1 around a and any local
parameterization (U2, r2) of S 2 around F(a), the map

Fr1,r2 ≡ r−1
2 ◦ F ◦ r1 : U1 → U2
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is smooth (in the usual sense). Fr1,r2 is called the local representation of F with
respect to the local parameterizations (U1, r1) and (U2, r2).

Definition 4.7.3. A map F : S 1 → S 2 is called a diffeomorphism if F is bijective and
both F and F−1 are smooth maps.

4.8 The differential of a smooth map between surfaces

The notion of a smooth map between surfaces is a natural generalization of the notion
of smooth map between open sets in Euclidean spaces. The same should hold true, of
course, also for the notion of differential. We shall emphasize, therefore, a property
of the differential of map between Euclidean spaces that will be used to construct the
generalization. Let G : B → R3 be a smooth map, with B ⊂ R3 – an open set, while
G(x, y, z) = (g1(x, y, z), g2(x, y, z), g2(x, y, z)). Then, for any point a = (x, y, z) ∈ B, the
differential of G at a,

daG : R3
a → R

3
G(a)

is a linear map, whose matrix is the Jacobi matrix
D(g1, g2, g3)

D(x, y, z)

∣∣∣∣∣
(x0,y0,z0)

= (αi j), 1 ≤ i, j ≤ 3,

where
αi j = ∂igi(x0, y0, z0).

For any vector h ∈ R3
a, of components {h1, h2, h3}, the vector daG(h) has the components

3∑
j=1

α1 jh j,

3∑
j=1

α2 jh j,

3∑
j=1

α3 jh j

 .
Let us suppose now that the vector h is tangent to the parameterized curve ρ(t) =
(x(t), y(t), z(t)) at point t = t0, i.e. h = ρ′(t0). We are going to show that the vector
daG(h) is the tangent vector to the parameterized curve (G ◦ ρ)(t) at t = t0. To this end,
we differentiate the relation

(G ◦ ρ)(t) = (g1(x(t), y(t), z(t)), g2(x(t), y(t), z(t)), g3(x(t), y(t), z(t)))

and we obtain:

(
−−−−→
G ◦ ρ)′(t0) =

 3∑
k=1

∂g1

∂xk (x0, y0, z0)hk,

3∑
k=1

∂g2

∂xk (x0, y0, z0)hk,

3∑
k=1

∂g3

∂xk (x0, y0, z0)hk

 =
=

 3∑
k=1

α1khk,

3∑
k=1

α2khk,

3∑
k=1

α3khk

 ,
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where
{h1, h2, h3} = {x′(t0), y′(t0), z′(t0)} = ρ′(t0).

Thus, the differential daG assigns to a tangent vector to the path ρ(t) at t = t0 the
tangent vector to the path G(ρ(t)) at t = t0.

Let now F : S 1 → S 2 be a smooth map between the surfaces S 1 and S 2 and a ∈ S 1.
Then to any smooth path (I, ρ) on S 1 corresponds a smooth path (I, F ◦ ρ) on S 2. If ρ(t)
passes through a for t = t0, then the path F ◦ ρ(t) will pass through F(a) for t = t0.

Definition 4.8.1. The map TaS 1 → TF(a)S 2, assigning to each tangent vector ρ′(t0)
to a parameterized curve ρ(t) on S 1, with ρ(t0) = a, the tangent vector (

−−−−→
F ◦ ρ)′(t0) to

the parameterized curve F ◦ ρ at t = t0 is called the differential of the smooth map
F : S 1 → S 2 at the point a and it is denoted by daF.

Now, there might be a little difficulty here. Namely, we could have on S 1 two dif-
ferent curves, which have the same tangent vector at a contact point. As the images of
the two parameterized curves through F are, generally, distinct, it may happen that the
images do not have the same tangent vector at the contact point. Well, as we shall see in
a moment, this not actually the case. Indeed, let a ∈ S 1 and (I, ρ = ρ(t)), (I1, ρ1 = ρ1(s))
– two parameterized curves on S 1 such that ρ(t0) = ρ1(s0) = a and ρ′(t0) = ρ′1(s0). We
choose an arbitrary local parameterization (U, r) on S 1, around a. As we are interested
only on the local phenomena that happen around a, we may assume, without restricting
the generality, that ρ(I) ⊂ r(U) and ρ1(I1) ⊂ r(U). Let’s suppose that the local equation
of the curves in the parameterization (U, r) are

(ρ)

u = u(t)
v = v(t)

,

and,

(ρ1)

u = u1(s)
v = v1(s)

,

respectively. Then the vectors ρ′(t0) and ρ1
′(s0) have, in the natural basis {r′u, r

′

v} the
expressions

ρ′(t0) = {u′(t0), v′(t0)}

ρ1
′(s0) = {u′1(s0), v′1(s0)}.

Moreover, in the chosen parameterization,

(F ◦ ρ)(t) = Fr(u(t), v(t))

(F ◦ ρ1)(s) = Fr(u1(s), v1(s)),
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with Fr = F ◦ r. Thus,

(
−−−−→
F ◦ ρ)(t0) =

d
dt

(Fr(u(t), v(t)))(u0, v0) =
−−−−→
(Fr)′u(u0, v0)u′(t0) +

−−−−→
(Fr)′v(u0, v0)v′(t0)

(
−−−−−→
F ◦ ρ1)(s0) =

d
ds

(Fr(u(s), v(s)))(u0, v0) =
−−−−→
(Fr)′u(u0, v0)u′1(s0) +

−−−−→
(Fr)′v(u0, v0)v′1(s0).

Now, since ρ′(t0) = ρ1
′(s0), it follows that

(
−−−−→
F ◦ ρ)′(t0) = (

−−−−−→
F ◦ ρ1)′(s0),

i.e. the definition of the differential of F makes sense.

Theorem. The map dF : TaS 1 → TF(a)S 2 is linear.

Proof. From the computations made above, it follows immediately that if a vector h ∈
TaS 1 has in the natural basis {r′u, r

′

v} of the linear space TaS 1, the components {h1, h2},
then

daF(h) =
−→
F′ru(u0, v0)h1 +

−→
F′rv(u0, v0)h2, (4.8.1)

whence the linearity. �

Example. Let S 1, S 2 be two surfaces in R3, D : R3 → R3 a diffeomorphism such that
D(S 1) = S 2, F = DS 1 : S 1 → S 2, a ∈ S ⊂ R3. Then we have

daF = daD|TaS 1 , (4.8.2)

where daD : R3
a → R

3
D(a) is the differential of the map D at a. In particular, let S 2

R and
S 2

r be the spheres of radii R and r, respectively, centred at the origin and D : R3 →

R3 : (x, y, z)→ r
R (x, y, z) – a homothety, which is, obviously, a diffeomorphism such that

D(S 2
R) = S 2

r . Then, for the map F = D|S 2
R

: S 2
R → S 2

r , we have daF(h) = r
R h.

4.9 The spherical map and the shape operator of an oriented
surface

Let S ⊂ R3 be an oriented surface and S 2 – the unit sphere centred at the origin. If
the orientation of S is given by the unit normal n(a), a ∈ S , then we can build a map
Γ : S → S 2, associating to each a ∈ S the point on S 2 has as radius vector Γ(a) = n(a).
The map Γ is called the spherical map of the surface S . This map place a central role in
the theory of surfaces. We are going to show, first of all, that Γ is smooth:
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Theorem 4.9.1. The spherical map Γ : S → S 2 of an oriented surface S into the unit
sphere S 2 is a smooth map between surfaces.

Proof. Let a ∈ S . We choose a local parameterization (U, r) of the surface S around a,
compatible with the orientation. Clearly, since S is orientable, such a parameterization
always exists. Indeed, if we choose a parameterization (U1, r1) which is not compatible
with the orientation, i.e. we have

r′1u × r′1v

‖r′1u × r′1v‖
= −n(u, v),

then we replace the domain U1 by U−1 , the symmetric of U1 with respect to the Ov-axis,
and the map r1(u, v) by r−1 (u, v) = r1(−u, v). It is easy to see that the pair (U−1 , r

−
1 ) is a

parameterization of the surface, compatible with the orientation.
Now we have

(Γ ◦ r)(u, v) = Γ(r(u, v)) = Γr(u, v) = n(u, v) =
r′u × r′v
‖r′u × r′v‖

.

Thus, the local representation of Γ is smooth, therefore Γ itself is smooth. �

Examples. (i) For a plane Π the spherical map is constant.

(ii) For the sphere S 2
R the map Γ : S 2

R → S has the expression Γ(x, y, z) = 1
R (x, y, z),

with x2 + y2 + z2 = R2.

As we saw, the tangent space to the sphere, TΓ(a)S 2, is orthogonal to the radius
vector n(a) of the point Γ(a). On the other hand, n(a) is orthogonal to TaS . Thus, if we
identify R3

a and R3
Γ(a) to R3, then the subspaces, TaS and TΓ(a)S 2 coincide. Therefore,

we may think of the differential daΓ : TaS → TΓ(a)S 2 as being, in fact, a linear operator
TaS → TaS .

Definition 4.9.1. The linear operator daΓ : TaS → TaS is called the shape operator of
the oriented surface S at the point a and it is denoted by A or Aa.

Remark. There is no general agreement regarding the definition, nor the name of the
shape operator. In some books, the shape operator carries an extra minus sign. Some-
times it is called the Weingarten mapping, or, also the principal, or fundamental op-
erator. Historically, it is true, indeed, that Weingarten was the first to write down the
formulae for the differentiation of the spherical map (in other words, he was the one to
find the partial derivatives of the unit normal vectors in terms of the derivatives of the
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radius vector). Nevertheless, the shape operator, as a linear map, was introduced in dif-
ferential geometry by the Italian mathematician Cesare Burali-Forti ([6]), in 1912, under
the name omografia fondamentale, i.e. fundamental homography.
Example. (i) For a plane, the shape operator vanishes.

(ii) For a sphere, the shape operator is a homothety.
Let now (U, r) be a local parameterization of S , with the orientation. Then the local

representation of the spherical map Γ of S will be given by

n(u, v) =
r′u × r′v
‖r′u × r′v‖

,

therefore, for the shape operator we will have:

A(h) = n′uh1 + n′vh2, (4.9.1)

where h ∈ Tr(u,v)S ; (h1, h2) are the components of h with respect to the natural basis
{r′u, r

′

v}. In particular, we have

A(r
′

u) = n′u, A(r
′

v) = n′v. (4.9.2)

Theorem. The shape operator A is self-adjoint, i.e. ∀h,p ∈ TaS , we have

A(h) · p = h · A(p). (4.9.3)

Proof. It is enough to make the proof for the vectors, r′u and r′v. The case h = p is trivial,
therefore it is enough to check that

A(r
′

u) · r
′

v = r
′

u · A(r
′

v),

i.e.
n′u · r

′

v = r
′

u · n′v. (4.9.4)

To prove this, we start from the obvious equalities:

r
′

v · n = 0 (*)

şi
r
′

u · n = 0 (**)

We differentiate (*) with respect to u and (**) with respect to v and we getr′′uv · n + r′v · n′u = 0
r′′uv · n + r′u · n′v = 0

whence, subtracting the two equalities, we get the conclusion. �
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Consequence. In each tangent space TaS there is an orthonormal basis, made up of
eigenvectors of the shape operator A.

Proof. Since A is self-adjoint, the two eigenvalues λ1, λ2 are real. If λ1 , λ2, then the
eigenvectors corresponding to λ1 and λ2 are orthogonal, hence it is enough to choose a
unit vector in each eigenspace. If λ1 = λ2, then A is just a homothety and any orthonor-
mal basis will do (since, in this case, any tangent space is an eigenvector of A). �

4.10 The first fundamental form of a surface

Let S be a surface in R3. Then the scalar product in R3 induces a scalar product in each
R3

a and, hence, it also induces a scalar product in each tangent space TaS , a ∈ S .

Definition 4.10.1. The first fundamental form of a surface S is, by definition, the func-
tion ϕ1, associating to each a ∈ S the restriction of the scalar product of R3

a to TaS . We
shall say usually, informally, that the first fundamental form is the restriction itself, but
it should be kept in mind, however, what really happens. Thus, for any a ∈ S and any
p,q ∈ TaS , we will have

ϕ1(p,q) = p · q. (4.10.1)

Remark. In many textbooks, especially the older ones, the first fundamental form is not
defined as the restriction of the scalar product to TaS , but rather as the quadratic form
associated to this restriction.

If (U, r) is a local parameterization of S , then for any (u, v) ∈ U the tangent space
R2

(u,v) of the domain U at the point (u, v) can be identified with the space Tr(u,v)S , asso-
ciating to the vectors {1, 0}, {0, 1}, making up a basis of R2

(u,v), the vectors r′u(u, v) and
r′v(u, v). It is easy to see that, in fact, this identification is just the linear isomorphism
dr(u,v) : R2

(u,v) → Tr(u,v)S . Using this identification, one can transport the first funda-
mental form ϕ1 of S to the domain S (which can be seen, as a matter of fact, as being a
simple surface, with the global parameterization given by the identical map of U). Thus,
for any (u, v) ∈ U, in the tangent space Tr(u,v)U ≡ R2

(u,v) at the domain U, the scalar
product of two vectors is defined by the rule

ϕ̃1(ξ, η) = ϕ1(dr(u,v)(ξ), dr(u,v)(η)) = dr(u,v)(ξ) · dr(u,v)(η).

It easy to see that, by construction, the map dr(u,v) : R2
(u,v) → Tr(u,v)S is isometrical
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with respect to the scalar products ϕ̃1 and ϕ1 respectively. We introduce the notations
E(u, v) = r′u(u, v) · r′u(u, v)
F(u, v) = r′u(u, v) · r′v(u, v)
G(u, v) = r′v(u, v) · r′v(u, v)

.

Then the functions E, F,G are smooth on U, while the matrix G =
(

E F
F G

)
is the ma-

trix of the scalar product ϕ1 on the tangent space Tr(u,v)S with respect to the basis
{r′u(u, v), r′v(u, v)}, but it is also the matrix of the scalar product ϕ̃1 on the the tangent
space R2

(u,v) = T(u,v)U with respect to the basis {{1, 0}, {0, 1}}.

Examples. 1. For the plane Π given by the global parameterization r = r0 + ua+ vb,
a × b , 0, we have:

r′u = a
r′v = b

hence


E = a2

F = a · b
G = b2

.

If Π is the coordinate plane xOy, then we may set r0 = 0, a = ı, b = , therefore
the first fundamental form has the matrix G =

(
1 0
0 1

)
.

2. For the sphere S 2
R, we choose the local parameterization (U, r), with

r(u, v) = (R cos u cos v,R cos u sin v,R sin u),

and U =
(
−π2 ,

π
2

)
×

(
−π2 ,

π
2

)
. We get immediately E = R2, F = 0,G = R2 cos2 u,

hence the matrix of the first fundamental form is given by

G = R2
(
1 0
0 cos2 u

)

4.10.1 First applications

The length of a segment of curve on a surface

Let S be a surface, (U, r) – a local parameterization of S and (I, ρ) – a parameterized
curve with ρ(I) ⊆ r(U), given by the local equations u = u(t), v = v(t). Then, in the
natural basis, the tangent vector of ρ, ρ′(t) has the components {u′(t), v′(t)} and we can
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compute its length using the matrix G. Therefore, we have, for the length of the segment
of ρ between t1 and t2:

lt1,t2 =

t2∫
t1

‖ρ′(t)‖dt =

t2∫
t1

√
E(t)u′2 + 2F(t)u′v′ +G(t)v′2dt,

where 
E(t) = E(u(t), v(t))
F(t) = F(u(t), v(t))
G(t) = G(u(t), v(t))

.

Example. We take, on the sphere S 2
R, the curve given by the local equations (in the

parameterization described in the previous example) u = 0, v = t, where t ∈ (0, 2π)
(the equator with a point removed). As we saw above, the first fundamental form of the
sphere has the matrix G = R2

(
1 0
0 cos2u

)
. As along the curve we have u = 0, it follows

that u′(t) = 0, v′(t) = 1. On the other hand, cos2 u = cos2 0 = 1, hence, along the curve,
the matrix G will be the identity matrix, multiplied by R2. If we want to compute, for
instance, the length of the segment of curve between t1 = π

2 and t2 = π we will get

l π
2 ,π
=

π∫
π
2

√
R2 · 0 + 2 · 0 + R2 · 1dt = R · t

∣∣∣∣∣∣∣∣∣∣
π

π
2

=
πR
2
,

which was to be expected (the segment of curve is a quarter of a great circle on the
sphere).

The angle of two curves on a surface

Let (U, r) be a parameterization of a surface S , (I, ρ = ρ(t)), (I1, ρ1 = ρ1(s)) – two
curves on S such that ρ(I) ⊂ r(U), ρ1(I1) ⊂ r(U). We assume that the supports of the
two curves intersect at r(u0, v0), i.e. there are t0 ∈ I, s0 ∈ I1 such that:

ρ(t0) = ρ1(s0) = r(u0, v0).

If the local equations of the two curves are

(ρ)

u = u1(t)
v = v1(t)

,
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and

(ρ1)

u = u2(s)
v = v2(s)

,

respectively, then the decomposition of the tangents vector at the intersection point with
respect to the natural basis will be:ρ′(t0) = {u′1(t0), v′1(t0)}

ρ1
′(s0) = {u′2(s0), v′2(s0)}

,

therefore the cosine of the angle of the curves3 at the contact point is, as it is well known,

cos θ =
ρ′(t0) · ρ1

′(s0)
‖ρ′(t0)‖ · ‖ρ1

′(s0)‖
=

Eu′1u′2 + F(u′1v′2 + u′2v′1) +Gv′1v′2√
Eu′1

2 + 2Fu′1v′1 +Gv′1
2 ·

√
Eu′2

2 + 2Fu′2v′2 +Gv′2
2
,

where 
E = E(u0, v0)
F = F(u0, v0)
G = G(u0, v0)

and


u′1 = u′1(t0)
v′1 = v′1(t0)
u′2 = u′2(s0)
v′2 = v′2(s0)

.

The area of a parameterized surface

Let (U, r) be an oriented parameterized surface. There are many ways of introducing
the notion of area. All of them are more or less connected to integral calculus, so we
are not going to enter into any details here. Basically, as in the case of plane geomet-
ric figures, the area should be a function associating to each oriented patch a positive
number, subject to some restrictions. We choose, following Stoker, the following three
restrictions:

a) The area should be given by an integral of the form

A =
"
U

f dudv,

where f should depend only upon u, v, r, r′u, r
′

v (no higher derivatives of r should be
involved!).

3We are speaking, of course, about the angle of the tangent vectors.
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b) It is invariant with respect to rigid motions of the space and to parameter transforma-
tions that preserve the orientation.

c) A square of side length 1 has area 1.

It can be proved that the only formula for area that verifies these three axioms is

A =
"
U

√
EG − F2dudv ≡

"
U

‖r
′

u × r
′

v‖dudv. (4.10.2)

We will give a heuristic motivation for the formula (4.10.2). It should not be taken,
however, as being a “proof”, because no such claim is being currently made.

The “classical” approach. Let (U, r) be a parameterized surface and D ⊂ U – a com-
pact subset of U such that r(∂U) is a piecewise smooth curve in R3. We want to define
the area of r(D) ⊂ r(U). The basic idea is that we already have a notion of area for
plane figures, in particular for parallelograms. Thus, let (u, v) ∈ D and M = r(u, v).
Through M pass two coordinate lines, one from each family. Let M1 = r(u + ∆u, v),
M2 = r(u, v + ∆v) be two points on these lines, shifted from M with the parameter shifts
∆u and ∆v, respectively, and M′ = r(u+∆u, v+∆v). If ∆u and ∆v are small enough, then
the projection of the curvilinear parallelogram MM1M′M2 on the tangent plane to the
surface at the point M is (approximately, of course), a plane parallelogram in the tangent
plane. The sides of this parallelogram are r′u∆u and r′v∆v and its area will be, then

∆σ = ‖r
′

u∆u × r
′

v∆v‖ = ‖r
′

u × r
′

v‖∆u∆v =
√

EG − F2∆u∆v,

where, of course, the coefficients of the first fundamental form have been computed at
the point of M. It is only natural, then, to define the area of r(D) as

A = lim
∆u→0
∆v→0

Σ∆σ =

"
D

√
EG − F2dudv,

where the sum in the middle term is taken after all the small curvilinear parallelograms
that cover r(U).

Remark. We might expect to obtain for the area of domain on a surface an interpretation
similar to the one we got for the length of a segment of curve. Namely, we may discretize
the domain of the parameterization and consider the images of the selected points. They
will determine a polygonal surface inscribed into the surface. Then we may consider that
the area of the polygons that make up this polygonal surface goes to zero and define the
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area of our surface as being the limit of the area of the polygonal surface. Unfortunately,
as a celebrated example of H.A. Schwartz shows, it just doesn’t work, because the limit
is not independent on the type of polygons we consider and, in particular, for some
“polygonizations” of the surface, the area may be infinite and for other ones finite. Of
course, the things can be fixed, with a little care, but this is a subject that belongs to
theory of integration rather than to differential geometry, therefore we shall not insist.

4.11 The matrix of the shape operator of a surface in the nat-
ural basis

Let (U, r) be a local parameterization of the oriented surface S , compatible with the
orientation. We shall denote byA the matrix of the shape operator A with respect to the
natural basis {r′u, r

′

v}. Since, as we saw earlier,

A(r
′

u) = n′u, A(r
′

v) = n′v,

we have
( nu n′v) = (r

′

u r
′

v) · A. (4.11.1)

We multiply from the left with the matrix
(

r′u
r′v

)
and we get:

(
r′u
r′v

)
·
(

n′u n′v
)
=

(
r′u · n′u r′u · n′v
r′v · n′u r′v · n′v

)
=

=

(
r′u
r′v

)
·
(
r′u r′v

)
· A =

(
r′u · r

′

u r′u · r
′

v
r′v · r

′

u r′v · r
′

v

)
· A = G · A.

We introduce the functions 
L(u, v) = r′u · n′u
M(u, v) = r′u · n′v
N(u, v) = r′v · n′v

, (4.11.2)

and the matrixH , defined by

H =

(
L M
M N

)
Then the last equality reads

H = G · A.
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Since the scalar product on R3 is nondegenerate, the same is true for its restriction to any
subspace and, as a consequence, the matrix G is invertible. If G−1 be its inverse, then for
the matrix of the shape operator we get

A = G−1 · H , (4.11.3)

where, as one can see very easily,

G−1 =
1

EG − F2

(
G −F
−F E

)
.

If we perform the computation, we obtain:

A =
1

EG − F2

(
GL − FM GM − FN
−FL + EM −FM + EN

)
(4.11.4)

All we have to do now is to express the quantities L,M,N in terms of the derivatives of
the function r. To this end, we differentiate the relations r′u · n = 0 and r′v · n = 0 with
respect to u and v and we get: 

r′′u2 · n + r′u · n′u = 0
r′′uv · n + r′u · n′v = 0
r′′uv · n + r′v · n′u = 0
r′′v2 · n + r′v · n′v = 0

,

whence we obtain from L,M,N the expressions:
L = r′u · n′u = −n · r′′u2

M = r′u · n′v = −n · r′′uv

N = r′v · n′v = −n · r′′v2

(4.11.5)

or, having in mind that

n =
r′u × r′v
‖r′u × r′v‖

,

while
‖r
′

u × r
′

v‖ = H(=
√

EG − F2),
L = − 1

H (r′u, r
′

v, r
′′

u2)
M = − 1

H (r′u, r
′

v, r
′′

uv)
N = − 1

H (r′u, r
′

v, r
′′

v2)

. (4.11.6)
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Example. For the helicoid
x = u cos v
y = u sin v
z = bv

, (u, v) ∈ R2, b > 0,

we can define the orientation by putting

n(u, v) =
{

b sin v
√

b2 + u2
,−

b cos v
√

b2 + u2
,

u
√

b2 + u2

}
.

On gets, after a straightforward computation:

G =

(
1 0
0 b2 + u2

)
, H =

 0 b√
b2+u2

b√
b2+u2

0

 , A =

 0 b
(b2+u2)3/2

b
(b2+u2)3/2 0

 .
4.12 The second fundamental form of an oriented surface

Definition 4.12.1. The second fundamental form of an oriented surface S is a map as-
sociating to each a ∈ S the application ϕ2(a) : TaS × TaS → R given by

ϕ2(ξ, η) = −ϕ1(A(ξ), η), ∀ξ, η ∈ TaS . (4.12.1)

Remark. The minus sign in the previous definition is a consequence of our particular
choice of sign in the definition of the shape operator. We found natural to choose the
shape operator to be the differential of the spherical map rather then the opposite of the
differential, but then in the definition of the second fundamental form we had to introduce
an extra minus sign, in order to be consistent with the generally accepted definition of
the second fundamental form.

Proposition 4.12.1. For each a ∈ S , ϕ2(a) is a symmetrical bilinear form.

Proof. We take two arbitrary tangent vectors ξ, η ∈ TaS and two arbitrary real numbers
α, β ∈ R. Then we have, first of all:

ϕ2(η, ξ) = −ϕ1(A(η), ξ) A
=

self-adjoint
−ϕ1(η, A(ξ))

ϕ1
=

symmetrical
−ϕ1(A(ξ), η) = ϕ2(ξ, η),

which means that ϕ2 is symmetrical. Due to the symmetry, it is enough to prove the
linearity in the first variable only. We have

ϕ2(αξ1 + βξ2, η) = −ϕ1(A(αξ1 + βξ2), η) A
=

linear
−ϕ1(αA(ξ1) + βA(ξ2), η)

ϕ1
=

bilinear
ϕ1
=

bilinear
−αϕ1(A(ξ1), η) − βϕ1(A(ξ2), η) = αϕ2(ξ1, η) + βϕ2(ξ2, η),
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which shows the linearity in the first variable and concludes the proof. �

Let (U, r) be a local parameterization of the oriented surface S , compatible with the
orientation. Then the matrix [ϕ2] of the second fundamental form with respect to the
canonical basis {r′u, r

′

v} has the form:

[
ϕ2

]
=

(
ϕ2(r′u, r

′

u) ϕ2(r′u, r
′

v)
ϕ2(r′v, r

′

u) ϕ2(r′v, r
′

v)

)
.

But ϕ2(r′u, r
′

u) = −ϕ1(A(r′u), r′u) = −ϕ1( n′u, r
′

u) = −n′u · r
′

u

ϕ2(r′u, r
′

v) = ϕ2(r′v, r
′

u) = −n′u · r
′

v = −n′v · r
′

u ϕ2(r′v, r
′

v) = −n′v · r
′

v
,

and, thus, we get the matrix

[
ϕ2

]
= −

(
n′u · r

′

u n′u · r
′

v
n′v · r

′

u n′v · r
′

v

)
= −

(
L M
M N

)
not.
=

(
D D′

D′ D′′

)
.

It follows, this way, that the matrix of the second fundamental form in the canonical
basis is just −H . Thus, for the coefficients of the second fundamental form with respect
to the natural basis, we have 

D = n · r′′u2

D′ = n · r′′uv

D′′ = n · r′′v2

(4.12.2)

Remark. The reader should be careful with the notations for the coefficients of the second
fundamental form. For them there is, also, used the notation e, f , g. Also, in some books,
the letters L,M,N are used to denote the coefficients of the second fundamental form
themselves. The notations D,D′,D′′ are usually credited to Gauss (in Disquisitiones). It
should be noted, however, that for Gauss, the meaning of the symbols is a little different:
they are not the coefficients of the second fundamental form as we know it, but rather
these coefficients multiplied by

√
EG − F2.

Example. For the sphere S = S 2
R, we have, as we saw before, n = 1

R {x, y, z}, therefore,
as we mentioned earlier, the shape operator A is a homothety of ratio 1/R, i.e.

A(p) =
1
R

p, ,∀p ∈ TaS 2R.
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Thus,

ϕ2(p,q) = −ϕ1

(
1
R

p,q
)
= −

1
R
ϕ1(p,q) = −

1
R

p · q.

therefore, for the sphere, the first two fundamental forms are proportional. Clearly,
the same is true for the plane, when the second fundamental form vanishes identically.
Surprisingly as it might seem, actually, it can be shown that these are the only two
surfaces with this property.

4.13 The normal curvature. The Meusnier’s theorem

Let S be an oriented surface and n – the unit normal. We take a regular parameterized
curve, ρ = ρ(t), lying on S .

Definition 4.13.1. The projection of the curvature vector k(t) of ρ ( as a signed scalar)
on n(ρ(t)) is called the normal curvature of the curve ρ(t) at t and it is denoted by kn(t).

Let θ(t) be the angle between the osculating plane of ρ(t) and n(ρ(t)). Then, clearly,

kn(t) = k(t) · cos θ(t), (4.13.1)

where k(t) is the curvature of the curve ρ(t).

Examples. 1. The normal curvature of any plane curve is zero (in this case the angle
θ(t) is always π

2 , therefore cos θ(t) ≡ 0).

2. If the support of a parameterized curve lies on a straight line, then its normal
curvature is always zero, no matter on what surface is the curve situated, because,
this time, the curvature of the curve vanishes identically.

Remark. The relation (4.13.1) has a simple geometrical interpretation (the Meusnier’s
theorem): the center of curvature of a curve ρ, lying on a surface S , is the orthogonal
projection on its osculating plane of the center of curvature of the normal section tangent
to ρ at that point.

The normal curvature of a curve on a surface can be expressed easily if we know the
first two fundamental forms of the surface. Indeed, we have:

Theorem 4.13.1. The normal curvature of a parameterized curve ρ(t), lying on an ori-
ented surface S , is given by the formula

kn(t) =
ϕ2(ρ′(t), ρ′(t))
ϕ1(ρ′(t), ρ′(t))

. (4.13.2)
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Proof. As is many times the case with parameterized curves, the proof is simpler in the
case of naturally parameterized curves. Since the curvature of any regular parameterized
curve is invariant to a parameter change, we can replace the curve ρ(t) by a n equivalent,
naturally parameterized curve, ρ1(s), the natural parameter being the arc length. The
curvature vector of the curve ρ1(s) will be ρ1

′′(s). We choose a local parameterization
(U, r) of the surface S and we assume that ρ1(s) has in this parameterization the local
equations u = u(s), v = v(s), i.e. ρ1(s) = r(u(s), v(s)). Then

ρ1
′′(s) = r

′′

u2 · (u′)2 + 2r
′′

uv · u
′v′ + r

′′

v2 · (v′)2 + r
′

u · u
′′ + r

′

v · v
′′.

Thus, for the normal curvature of the curve ρ1(s) we get the expression:

kn(s) = k(s) · n(ρ1(s)) = ρ1
′′(s) · n(ρ1(s)) =

= r
′′

u2 · n · (u′)2 + 2r
′′

uv · n · u′v′ + r
′′

v2 · n · (v′)2 =

= −L · (u′)2 − 2M · u′v′ − N · (v′)2 = ϕ2(ρ1
′(s), ρ1

′(s)).

Now, we come back to the initial parameterized curve. We have

ρ′(s) = ρ1
′(s(t)) · s′(t) where s′(t) ≡ ‖ρ′(t)‖.

Thus,

ρ1
′(s(t)) =

ρ′(t)
‖ρ′(t)‖

,

therefore,

kn(t) = ϕ2

(
ρ′(t)
‖ρ′(t)‖

,
ρ′(t)
‖ρ′(t)‖

)
=

1
ρ′(t) · ρ′(t)

· ϕ2(ρ′(t), ρ′(t)) =
ϕ2(ρ′(t), ρ′(t))
ϕ1(ρ′(t), ρ′(t))

.

�

Consequence. If two curves on an oriented surface have a common point and they have
the same tangent line at this point, then the two curves have the same normal curvature
at the contact point.

Proof. Let p and q be the tangent vectors to the two curves at their common point. From
the hypothesis, p = αq, hence, from the theorem,

kn =
ϕ2(p,p)
ϕ1(p,p)

=
ϕ2(αq, αq)
ϕ1(αq, αq)

=
α2ϕ2(q,q)
α2ϕ1(q,q)

=
ϕ2(q,q)
ϕ1(q,q)

�
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Remark. The previous consequence can be interpreted in another way. We take a family
of biregular parameterized curves on the surface, {ρα(t)}α∈A, passing through the same
point and having the same tangent line at the contact point. We denote by kα the cur-
vature of the curve ρα and by θα the angle between the normal to the surface and the
osculating plane of the curve ρα. The consequence is equivalent with the affirmation
that the product kn = kα cos θα does not depend on the choice of the curve from the fam-
ily. It makes sense, thus, to choose an arbitrary straight line in the tangent plane, passing
through the tangency plane, and to speak about the normal curvature of the surface in
the direction of this line or, in other words, we can define a map kn on the set of all
non-vanishing tangent vectors to the surface with real values, by putting

kn(h) =
ϕ2(h,h)
ϕ1(h,h)

. (4.13.3)

The quantity kn(h) is called the normal curvature of the surface in the direction of the
vector h (since, clearly, it depends only on the direction of the vector h, but not on its
length or sense.) Thus, the normal curvature of an oriented surface in the direction of
a vector h is the normal curvature of an arbitrary curve, lying on the surface, passing
through the origin of h and whose tangent line is parallel to h.

4.14 Asymptotic directions and asymptotic lines on a surface

We saw previously that the normal curvature of a surface at a given point and in a given
direction can be expressed in terms of the first two fundamental forms of the surface and
that, as stressed, although it is initially defined in terms of curves on surface, it actually
depends only on the direction of the tangent vector of the curve. It is interesting for us
to identify those directions for which the normal curvature vanish.

Definition 4.14.1. Let S be an oriented surface and p ∈ S . A non-vanishing vector
h ∈ TpS is said to have asymptotic direction if the normal curvature in its direction van-
ishes. Alternatively, based on the previous section, we can define a vector of asymptotic
direction as being one for which

ϕ2(h,h) = 0.

Accordingly, an asymptotic line or curve on a surface is a curve on the surface for which
all the tangent vectors have asymptotic direction.

Theorem 4.1. Let p ∈ S a point of an oriented surface. Then at this point we have
asymptotic directions if and only if the quadratic form associated to the second funda-
mental form of S at p is negatively semi-defined. If we choose a local parameterization
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(U, r) of S such that pr(u0, v0) for some (u0, v0) ∈ U, then this condition simply means
that

D(u0, v0) · D′′(u0, v0) − D′2(u0, v0) ≤ 0. (4.14.1)

Proof. Let h = {h1, h2} ∈ TpS be a non-vanishing tangent vector to the surface at the
point p. Then, with respect to the local parameterization chosen, h has asymptotic di-
rection if and only if

D(u0, v0)h2
1 + 2D′(u0, v0)h1h2 + D′′(u0, v0)h2

2 = 0.

As h , 0, we may assume, for instance, that h2 , 0. Then the previous equation can be
written as

D(u0, v0)
(
h1

h2

)2

+ 2D′(u0, v0)
h1

h2
+ D′′(u0, v0) = 0.

This equation, obviously has real solutions if and only if discriminant vanishes, but this
is exactly the condition 4.14.1. �

Remark. From the proof of the previous theorem it follows that when the second funda-
mental form is negatively defined we have two asymptotic directions, while at the points
when it is degenerate we have only one asymptotic direction (or two confounded ones).

From the definition of the normal curvature of a curve on a surface, it follows imme-
diately that

Proposition 4.14.1. Any straight line lying on a surface is an asymptotic line.

Proof. Indeed, the straight lines have zero curvature, therefore their normal curvature at
each point also vanishes. �

The differential equation of the asymptotic lines on a surface can be obtained directly
from the definition.

Theorem 4.2. Let S be an oriented surface and ρ : I → S – curve on the surface.
We assume that there is a local parameterization of S , (U, r = r(u, v)) such that ρ(I) ⊂
r(U) and the local equations of the curve with respect to this parameterization are u =
u(t), v = v(t). Then ρ is an asymptotic line on S if and only if

D(u(t), v(t)) · u′2(t) + 2 · D′(u(t), v(t)) · u′(t) · v′(t) + D′′(u(t), v(t)) · v′2(t) = 0. (4.14.2)

Proof. The equation (4.14.2) is just that condition for the tangent vector of the curve
(which has, with respect to the natural basis of the tangent space, the components
{u′(t), v′(t)}) to have asymptotic direction. �



152 Chapter 4. General theory of surfaces

Let us assume, now, that the curve ρ from the previous theorem is biregular, which
means, in particular, that is curvature is always strictly positive. From the definition of
the normal curvature it follows immediately that, if ν is the unit principal normal vector
of the curve, then the curve is anasymptotic line if and only if

ν(t) · n(u(t), v(t)) = 0,

where n is the unit normal vector to the surface. This actually means that the principal
normal of the curve lies on the tangent plane of the surface, at each point of the curve.
Thus, we obtain the following characterization of the asymptotic lines:

Theorem 4.3. Let S be an oriented surface and ρ a biregular parameterized curve on
S . Then ρ is an asymptotic line if and only if at each point its osculating plane coincide
with the tangent plane to the surface at that point.

Another immediate result concerning the asymptotic lines is the following:

Proposition 4.14.2. Let S be an oriented surface and (U, r = r(u, v)) – a local parame-
terization of S . Then the coordinate lines u = const and v = const are asymptotic lines
on r(U) if and only if D = D′′ = 0.

Example. Let us consider the helicoid, given by the parameterization
x = u cos v,
y = u sin v
z = b · v

where b is a constant. A straightforward computation leads to D = D′′ = 0, D′(u, v) =
−b/
√

b2 + u2. This means that, in this particular case, we have, at each point of the
surface, two asymptotic lines and these are nothing but the coordinate lines, u = const
and v = const. We notice that the helicoid is a ruled surface (see the last chapter) and at
each point, one of the coordinate lines is a straight line (or a line segment). This is, of
course, the line v = const (see the figure 4.14).

4.15 The classification of points on a surface

The first fundamental form of a surface is positively defined. The second one is not. This
is fortunate, as it allows us to give a classification of the points of the surface, according
to the sign of the second fundamental form or, more specifically, according to the sign
of its discriminant DD′′ − D′2.
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Figure 4.5: Asymptotic lines on the helicoid

Definition 4.15.1. A point a ∈ S of an oriented surface is called

(i) elliptic if the second fundamental form is positively defined at a;

(ii) parabolic if the second fundamental form is zero, but at least one of the coefficients
is different from zero;

(iii) hyperbolic, if the second fundamental form is negatively defined at a;

(iv) flat, or planar, if all the coefficients of the second fundamental form vanish at a.

Figure 4.6: Parabolic points on a surface

It is not difficult to see that this definition do not depend on the choice of the local
parameterization. Let us discuss, now separately, what happens in each particular case
and, also, give some examples.



154 Chapter 4. General theory of surfaces

Elliptic points. At an elliptic point, the normal curvature has the same signs in all
directions4. Applying the Meusnier’s theorem, this means that the centers of curvature
of all normal sections lie on the same side of the surface. An example of surface that has
only elliptic points is the ellipsoid, given, for instance, by the parameterization

r(u, v) = (a cos u cos v, b sin u cos v, c sin v). (4.15.1)

At an elliptic point there is no real asymptotic direction, therefore no asymptotic line
passes through an elliptic point.

Figure 4.7: Elliptic points on a surface

Parabolic points. In this case the normal curvature does not change the sign, but there
is exactly one direction where it vanishes. This is, clearly, an asymptotic direction. Thus,
through a parabolic point of a surface passes only one asymptotic line. The cylinders and
cones (with the apex removed) have only parabolic points.

Hyperbolic points. In the case of hyperbolic points, it is possible for kn to change sign
and there are exactly two direction where it vanishes. Thus, through a hyperbolic point
of a surface pass two asymptotic lines. The hyperbolic points are also called saddle
points. Such points we can find, for instance, on a hyperbolic paraboloid.

There are, of course, many surfaces on which we can meet all three kind of points
(for instance on the torus).

4It is not necessarily positive.
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Figure 4.8: The monkey saddle

Figure 4.9: Hyperbolic points on a surface

Flat points. The shape of the surface around a flat point might be quite complicated
and it is difficult to study it. In fact, in many cases, when proving a theorem in surface
theory one explicitly assumes that the surface has no flat points. The surface from the
figure 4.15 (the monkey saddle has a flat point at the origin of coordinates.
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4.16 Principal directions, principal curvatures, Gauss curva-
ture and mean curvature

Definition 4.16.1. The directions on the tangent plane to an oriented surface S at a point
a ∈ S , TaS , corresponding to the eigenvectors of the shape operators A are called the
principal directions of the surface at the point a.

Remark. At each point, an oriented surface either has two orthogonal principal directions
(if the eigenvalues of A are distinct), either all the directions are orthogonal (if the two
eigenvalues coincide).

Definition 4.16.2. A curve (Γ) on a surface S is called a principal line or a curvature
line if its tangent, at each point, has a principal direction.

Definition 4.16.3. A principal curvature of an oriented surface S at a point a ∈ S is the
normal curvature of S at a in a principal direction.

Proposition 4.16.1. The principal curvatures of a surface are the eigenvalues of the
shape operator, taken with opposite sign.

Proof. If e is an eigenvector of A, then A(e) = λ · e, where λ is the eigenvalue corre-
sponding to e, therefore

kn(e) =
ϕ2(e, e)
ϕ1(e, e)

=
−A(e) · e

e · e
=
−λ · e · e

e · e
= −λ.

�

Hereafter we shall denote by k1 and k2 the principal curvatures and we will always
assume that k1 ≥ k2.

Definition 4.16.4. An orthonormal basis {e1, e2} of the tangent space at a point of a
surface is called a basis of principal directions of the tangent space if the vectors of the
basis have principal directions.

Thus, the vectors of a basis of principal directions are subject to

A(ei) = −kiei, i = 1, 2.

We shall fix now a point of the surface and ask the following question: find the
normal curvature in the direction of a vector e, such that ∠(e, e1) = θ.
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As the length of e is not important, we shall assume that e is a unit vector: ‖e‖ = 1.
Then e = e1 · cos θ + e2 · sin θ, therefore

kn(e) =
ϕ2(e, e)
ϕ1(e, e)

=
−A(e) · e

e · e︸︷︷︸
=1

= −A(e1 cos θ + e2 sin θ) · (e1 cos θ + e2 sin θ) =

= (k1 cos θ · e1 + k2 sin θ · e2) · (e1 cos θ + e2 sin θ) = k1 cos2 θ + k2 sin2 θ.

Thus, we obtained:

Theorem 4.16.1. Let S be an oriented surface. Then the normal curvature at a point of
the surface, in the direction of a vector e, is given by the Euler’s formula:

kn(e) = k1 cos2 θ + k2 sin2 θ, (4.16.1)

where k1 and k2 are the principal curvature of the surface, while θ = ∠(e, e1).

An immediate consequence of the Euler’s formula is:

Theorem 4.16.2. The principal curvatures of a surface at a point are extreme values
of the normal curvature of the surface in the direction of a vector e, when the vector e
rotates around the origin of the tangent space of the surface at that point.

Proof. From the Euler’s formula, we have

kn(e) = k1 cos2 θ + k2(1 − cos2 θ) = k2 + (k1 − k2) cos2 θ.

It is clear now that the maximum value of the normal curvature is reached for θ = 0 (we
assumed that k1 ≥ k2!) and, in this case, we get kn = k1, while the minimal value – for
θ = π

2 , obtaining kn = k2. �

Definition 4.16.5. The quantities Kt = k1 ·k2 and Km =
1
2 (k1+k2) are called, respectively,

the total (Gaussian) and mean curvature of the surface.

The total and mean curvatures of a surface can be computed easily if the matrix of
the shape operator in an arbitrary basis is known. Indeed, we have:

Proposition 4.16.2.

Km = −
1
2

TrA (4.16.2)

Kt = detA. (4.16.3)
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Proof. As it is well known from linear algebra, the determinant and the trace are invari-
ants of any linear operator, which means that they are the same in any basis, although
the matrix of the operator does change, generally, if we modify the basis. In a basis of
principal directions, since the eigenvalues of the shape operator are just the opposite of
the principal curvature, the matrix of the shape operator will be:

A =

(
−k1 0
0 −k2

)
therefore

detA = k1 · k2 = Kt

−
1
2

TrA = −
1
2

(−k1 − k2) =
1
2

(k1 + k2) = Km.

�

Joachimstahl’s theorem

We will see below how can one find the lines of curvature of a surface by integrating a
differential equation. Anyway, in some special situations it is possible to find these lines
using other methods. For instance, sometimes, if we know the curvature lines of a surface
it is possible to find such lines on another surface. Such an instance is exemplified by
the following theorem, belonging to the German mathematician Joachimstahl.

Theorem. Let γ be a curve lying at the intersection of two regular oriented surfaces
S 1 and S 2 from R3. Let ni be the unit normals of the two surfaces (i = 1, 2). Let us
assume that S 1 and S 2 intersects under a constant angle, i.e. along the curve γ we have
n1 · n2 = const.. Then γ is a curvature line on S 1 iff it is a curvature line on S 2.

Proof. Let r = r(t) be a local parameterization of the curve γ. Then, since n1 · n2 =

const, we have

0 =
d
dt

( n1 · n2) = n′1 · n2 + n1 · n′2.

If γ is a principal line on S 1, then

n′1 = −k1 · r′,

where k1 is one of the principal curvatures of the surface S 1. On the other hand, since
the curve γ lies also on S 2, we have r′ ⊥ n2. From here and from the previous formula
we obtain that n′1 · n2 = 0, therefore

n1 · n′2 = 0.
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Since n′2 ⊥ n2 (since n2 has constant length), it follows from here and from the previous
equation that n′2 ⊥ r′ or, in other words, that there is a k2 ∈ R such that

n′2 = −k2r′,

i.e. γ is a line of curvature on the surface S 2, too. �

Consequence. The meridians and the parallels on a revolution surface are lines of cur-
vature.

Proof. Let γ be the rotating curve and S the resulted revolution surface. A meridian
is obtained by intersecting a plane Πm, passing through the rotation axis and S . If p ∈
Πm ∩ S , then the unit normal of the surface S , n(p), lies on the plane Πm, therefore the
normal of the surface and the normal of the plane Πm make up a constant angle, equal
to π

2 . As for the plane the second fundamental form vanishes identically, the same is
true for the shape operator, which means that all the plane curves are lines of curvature.
It follows, that, in particular, the meridian is, also, a line of curvature in the plane Πm,
which implies, using the Joachimstahl theorem, that it is a line of curvature also for the
surface S .

A parallel is an intersection curve between the surface S and a plane Πp, passing
through a point of the curve γ, perpendicular to the rotation axis. It is obvious, from
symmetry reasons, that along a parallel we should have ∠( n,Πp) = const and we apply
again the reasoning we used before. �

4.16.1 The determination of the lines of curvature

As we saw earlier, the lines of curvature are curves on a surfaces whose tangent vectors
are eigenvectors of the shape operator. Therefore, before showing how one can find the
lines of curvature, we will indicate a way to find the eigenvectors of the shape operator.

Lemma. Let r : U → R3 be a local parameterization of an oriented surface S . A
tangent vector v = v1r′u + v2r′v has principal direction iff∣∣∣∣∣∣∣∣∣

v2
2 −v1v2 v2

1
E F G
D D′ D′′

∣∣∣∣∣∣∣∣∣ = 0. (4.16.4)

Proof. Since v has principal direction iff it is an eigenvector of the shape operator A, i.e.
A(v) = λ · v, it follows that v has principal direction iff A(v) × v = 0. But, from the
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definition,

A(v) = A · v =
(
G−1 · H

)
· v =

1
H2

(
GL − FM GM − FN
−FL + EM −FM + EN

) (
v1
v2

)
=

=
1

H2

(
(GL − FM)v1 + (GM − FN)v2

(−FL + EM)v1 + (−FM + EN)v2

)
or

A(v) =
1

H2

αu︷                                     ︸︸                                     ︷
[(GL − FM)v1 + (GM − FN)v2] r

′

u+
1

H2 [(−FL + EM)v1 + (−FM + EN)v2]︸                                         ︷︷                                         ︸
αv

r
′

v.

Therefore,

A(v)×v = 0 ⇐⇒ (αur
′

u+αvr
′

v)×(v1r
′

u+v2r
′

v) = 0 ⇐⇒ (αu ·v2−αv ·v1)·(r
′

u×r
′

v) = 0.

As r′u × r′v , 0, since the surface is regular, it follows that

A(v) × v = 0 ⇐⇒ αu · v2 − αv · v1 = 0

or, having in mind the notations we made,

(FL − EM)v2
1 + (GL − EN)v1v2 + (GM − FN)v2

2 = 0.

Using now the coefficients of the second fundamental form instead of the components
of the matrixH , the previous relation becomes

(ED′ − FD)v2
1 + (ED′′ −GD)v1v2 + (FD′′ −GD′)v2

2 = 0. (4.16.5)

which is just another form of the relation (4.16.4) �

Consequence (the differential equation of the lines of curvature). Let γ be a curve lying
in the domain r(U) of a local parameterization(r,U) of a surface S , with the local
equation ρ(t) = r(u(t), v(t)). Then γ is a line of curvature on S iff

(ED′ − FD)u′2(t) + (ED′′ −GD)u′(t)v′(t) + (FD′′ −GD′)v′2(t) = 0 (4.16.6)

or

(ED′ − FD) + (ED′′ −GD)
dv
du
+ (FD′′ −GD′)

(
dv
du

)2

= 0. (4.16.7)

Proof. The relation (4.16.6) express, clearly, the condition for the vector ρ′ = u′(t)r′u +
v′(t)r′v to have principal direction, while (4.16.7) follows immediately from (4.16.6), by
eliminating the parameter t. �



4.16. Principal directions and curvatures 161

4.16.2 The computation of the curvatures of a surface

Theorem. Let r : U → R3 be a local parameterization of an oriented surface S . Then
the total and the mean curvatures of S are given, respectively, by the formulas:

Kt =
DD′′ − D′2

H2 (4.16.1)

Km =
DG − 2D′F + D′′E

2H2 . (4.16.2)

Proof. As we saw earlier, the matrix of the shape operator of a surface is given by

A =
1

H2

(
GL − FM GM − FN
−FL + EM −FM + EN

)
or A =

1
H2

(
FD′ −GD FD′′ −GD′

FD − ED′ FD′ − ED′′

)
,

therefore,

Kt = detA =
1

H4

[
F2D′2 − EFD′D′′ − FGDD′ + EGDD′′ − F2DD′′ + EFD′D′′+

+FGDD′ − EGD′2
]
=

1
H4

(EG − F2)︸      ︷︷      ︸
H2

·(DD′′ − D′2)

 = DD′′ − D′2

H2 ,

Km = −
1
2

TrA = −
1

2H2

(
2FD′ −GD − ED′′

)
=

DG − 2D′F + D′′E
2H2 .

�

Corollary. The principal curvatures k1 and k2 are the roots of the equation

k2 − 2Km · k + Kt = 0, (4.16.3)

i.e.

k1 = Km +

√
K2

m − Kt, (4.16.4)

k2 = Km −

√
K2

m − Kt. (4.16.5)

Corollary. A non-flat point of a surface is

1. elliptic iff Kt > 0;

2. parabolic iff Kt = 0;

3. hyperbolic iff Kt < 0.
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4.17 The fundamental equations of a surface

4.17.1 Introduction

We saw that, in the case of curves, the curvature and the torsion completely determine
a space curve (up to a rigid motion of the space). We may ask whether a similar result
holds for the case of surfaces. It is not completely obvious what are the entities that
should replace the curvature and the torsion, but, clearly, the first two fundamental forms
could be good candidates. Thus, we can formulate the question in the following way: If
we are given a domain U ⊂ R2 and two families of symmetric bilinear forms, with the
coefficients depending smoothly on the coordinates on U, such that, at each point of U,
the first form is positively defined, is there any regular parameterized surface r : U → R3

such that the two families of bilinear forms be the two first fundamental forms of this
surface? The answer is not affirmative, because, as we shall see, the coefficients of
the first two fundamental forms of a surface are not independent, therefore, our initial
data should satisfy some compatibility conditions (which are, in fact, the integrability
conditions for a system of partial differential equation). If, however, this conditions
are fulfilled, then the negative answer turns into an affirmative one. It is the aim of
this section to establish the compatibility conditions and to formulate the existence and
uniqueness theorem for parameterized surfaces.

4.17.2 The differentiation rules. Christoffel’s coefficients

If (U, r) is a regular parameterized surface, then, for each (u, v) ∈ U, the vectors r′u, r′v,n
for a basis of the vector space R3

r(u,v). Therefore, in particular, the derivatives of these
vectors can be expressed in terms of the vectors themselves. We already saw how to
express the derivatives of the normal versor. They define, essentially, the shape operator
of the surface. We shall obtain now similar formulae for the second order derivatives of
the radius vector. These formulae should be of the form

r′′u2 = Γ
1
11r′u + Γ

2
11r′v + A n

r′′uv = Γ
1
12r′u + Γ

2
12r′v + B n (4.17.1)

r′′v2 = Γ
1
22r′u + Γ

2
22r′v +C n

The coefficients Γ from these equations are called the Christoffel’s coefficients (of the
second kind). The coefficients A, B,C are easily identifiable as the coefficients of the
second fundamental form. To get the others, first of all, we shall express the scalar prod-
ucts r′′

u2 · r′u, r′′u2
· r′v and the analogues in terms of the coefficients of the first fundamental
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form and its derivatives. We have, first of all, r′u
2 = E, whence, differentiating with

respect to u, we get

r′′u2 · r′u =
1
2

E′u. (4.17.2)

Differentiating the same equality with respect to v, we get

r′′uv · r
′
u =

1
2

E′v (4.17.3)

Exactly in the same manner, starting from the definition of the other two coefficients of
the first fundamental form, we will obtain

r′′uv · r
′
v =

1
2

G′u (4.17.4)

r′′u2 · r′v = F′u −
1
2

E′v (4.17.5)

r′′v2 · r′u = F′v −
1
2

G′u (4.17.6)

r′′v2 · r′v =
1
2

G′v (4.17.7)

Returning to our problem, we multiply the first equation of (4.17.1) successively by r′u
and by r′v. Using the formulae (4.17.2) and (4.17.5), as well as the definitions of the
coefficients of the first fundamental form, we get the systemEΓ1

11 + FΓ2
11 =

1
2 E′u

FΓ1
11 +GΓ2

11 = F′u −
1
2 E′u

.

It is very easy to solve this system and we get
Γ1

11 =
GE′u − 2FF′u + FE′v

2(EG − F2)

Γ2
11 =

2EF′u − EE′v − FE′u
2(EG − F2)

(4.17.8)

and, exactly in the manner, starting from the other two equations from (4.17.1), we get
Γ1

12 =
GE′v − FG′u
2(EG − F2)

Γ2
12 =

EG′u − FE′v
2(EG − F2)

(4.17.9)
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and 
Γ1

22 =
2GF′v −GG′u − FG′v

2(EG − F2)

Γ2
22 =

EG′v − 2FF′v − FG′u
2(EG − F2)

. (4.17.10)

As for the derivatives of the normal versor, looking back at the expression of the shape
operator in terms of the coefficients of the first two fundamental forms, we shall get
immediately the formulae

n′u =
FD′ −GD
EG − F2 r′u +

FD − ED′

EG − F2 r′v

n′v =
FD′′ −GD′

EG − F2 r′u +
FD′ − ED′′

EG − F2 r′v

(4.17.11)

Remark. The formulae (4.17.11) were obtained by the German mathematician Julius
Weingarten, therefore they are called the Weingartens’s formulae. Clearly, these formu-
lae uniquely define the shape operator. This is the reason why in many books the shape
operator (or its opposite) is called the Weingarten’s operator or Weingarten’s mapping.

Christoffel’s and Weingarten’s coefficients in curvature coordinates

Let us assume that in our parameterization the coordinate lines are lines of curvature.
Then, as we saw earlier, we should have F = 0 and D′ = 0 on the entire support of the
parameterization. Then, as one can convince oneself easy, the Christoffel’s coefficients
become: 

Γ1
11 =

1
2

E′u
E
=

∂

∂u
ln E, Γ2

11 = −
E′v
2G

,

Γ1
12 =

∂

∂v
ln E, Γ2

12 =
∂

∂u
ln G,

Γ1
22 = −

G′u
E
, Γ2

22 =
∂

∂v
ln G,

(4.17.12)

while the Weingarten’s equation become:
n′u = −

D
E

r′u

n′v = −
D′′

G
r′v

(4.17.13)

One should not be surprised that the partial derivatives of the unit normal vector are, each
of them, colinear to one of the partial derivative of the radius vector. This is, actually,
nothing but the definition of the lines of curvatures.
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4.17.3 The Gauss’ and Codazzi-Mainardi’s equations for a surface

We shall prove now that between the coefficients of the first two fundamental forms of a
parameterized surface exists some relations, that we will call the Gauss’ equations and
the Codazzi-Mainardi’s equations, respectively. We summarize them in the following
theorem.

Theorem 4.17.1 (Gauss, Codazzi, Mainardi). In any local parameterization of a surface,
the following systems of equations are fulfilled,

∂Γ2
11

∂v
−
∂Γ2

12

∂u
+ Γ1

11Γ
2
11 + Γ

2
11Γ

2
21 − Γ

1
12Γ

2
11 − Γ

2
12Γ

2
12 = EKt

∂Γ1
12

∂u
−
∂Γ1

11

∂v
+ Γ2

12Γ
1
12 − Γ

2
11Γ

1
22 = FKt

∂Γ1
22

∂u
−
∂Γ1

12

∂v
+ Γ1

22Γ
1
11 + Γ

2
22Γ

1
12 − Γ

1
12Γ

1
12 − Γ

2
12Γ

1
22 = GKt

∂Γ2
12

∂v
−
∂Γ2

22

∂u
+ Γ1

12Γ
2
12 − Γ

1
22Γ

2
11 = FKt,

(4.17.14)

called the Gauss’s equations, and the relations

∂D
∂v
−
∂D′

∂u
= DΓ1

12 + D′(Γ2
12 − Γ

1
11) − D′′Γ2

11

∂D′

∂v
−
∂D′′

∂u
= DΓ1

22 + D′(Γ2
22 − Γ

1
12) − D′′Γ2

12,

(4.17.15)

called the Codazzi-Mainardi’s equations. Here E, F,G are the coefficients of the first
fundamental form of the surface, while D,D′,D′′ are the coefficients of the second fun-
damental form.

Proof. To simplify a little bit the notations, let us rewrite the Weingarten’s equations as n′u = a11r′u + a12r′v
n′v = a21r′u + a22r′v

. (4.17.16)

We have, obviously, the relation

r′′′u2v − r′′′uvu = 0.

But
r′′u2 = Γ

1
11r′u + Γ

2
11b′v + D n,
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hence

r′′′u2v =
∂Γ1

11

∂v
r′u + Γ

1
11r′′uv +

∂Γ2
11

∂v
r′v + Γ

2
11r′′v2 +

∂D
∂v

n + D n′v =

=
∂Γ1

11

∂v
r′u + Γ

1
11(Γ1

12r′u + Γ
2
12r′v + D′ n)+

+
∂Γ2

11

∂v
r′v + Γ

2
11(Γ1

22r′u + Γ
2
22r′v + D′′ n) +

∂D
∂v

n + D(a12r′u + a22r′v) =

= r′u

∂Γ1
11

∂v
+ Γ1

11Γ
1
12 + Γ

2
11Γ

1
22 + a12D

+
+ r′v

∂Γ2
11

∂v
+ Γ1

11Γ
2
12 + Γ

2
11Γ

2
22 + a22D

+
+ n

(
∂D
∂v
+ Γ1

11D′ + Γ2
11D′′

)
.

Analogously,

r′′uv = Γ
1
12r′u + Γ

2
12r′v + D′ n,

hence

r′′′uvu =
∂Γ1

12

∂u
r′u + Γ

1
12r′′u2 +

∂Γ2
12

∂u
r′v + Γ

2
12r′′uv +

∂D′

∂u
n + D′ n′u =

=
∂Γ1

12

∂u
r′u + Γ

1
12(Γ1

11r′u + Γ
2
11r′v + D n)+

+
∂Γ2

12

∂u
r′v + Γ

2
12(Γ1

12r′u + Γ
2
12r′v + D′ n) +

∂D′

∂u
n + D′(a11r′u + a21r′v) =

= r′u

∂Γ1
12

∂u
+ Γ1

12Γ
1
11 + Γ

2
12Γ

1
12 + a11D′

+
+ r′v

∂Γ2
12

∂u
+ Γ1

12Γ
2
11 + Γ

2
12Γ

2
12 + a21D′

+
+ n

(
∂D′

∂u
+ Γ1

12D + Γ2
12D′

)
.
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If we subtract the previous relations, we obtain

0 = r′′′u2v − r′′′uvu = r′u

∂Γ1
11

∂v
−
∂Γ1

12

∂u
+ Γ2

11Γ
1
22 − Γ

2
12Γ

1
12 + a12D − a11D′

+
+ r′v

∂Γ2
11

∂v
−
∂Γ2

12

∂u
+ Γ1

11Γ
2
12 + Γ

2
11Γ

2
22 + a22D − a21D′

+
+ n

(
∂D
∂v
−
∂D′

∂u
+ Γ1

12D − D′(Γ2
12 − Γ

1
11) + Γ2

12D′′
)
.

As the vectors r′u, r′v and n are linearly independent, a linear combination of them can
vanish only if each coefficient vanishes. If we equate to zero the coefficient of n, one
sees that one gets the first of the Codazzi-Mainardi’s equations. If we equate to zero
the coefficient of r′u follows, using the expressions of a21 and a22, the first of the Gauss’
equations, while from the coefficient of r′v follow the second of the Gauss’s equations.
The other three equations can be obtained in the same way, using, this time, the relation

r′′′uv2 = r′′′vuv.

�

Corollary 4.17.1. If the coordinate lines are lines of curvature, then the Codazzi-Mainardi
equations can be written a lot simpler:

∂D
∂v
= D

∂ ln E
∂v
+

D′′

2G
∂E
∂v

∂D′′

∂u
=

D
2E

∂G
∂u
+ D′′

∂ ln G
∂u

.

(4.17.17)

4.17.4 The fundamental theorem of surface theory

The theorem we are going to prove in this section is the analogue of the existence and
uniqueness theorem for space curves. It was first established by the French mathemati-
cian Ossian Bonnet, in 1860.

To shorten the formulas, in the following we shall denote the coordinates by u1 and
u2 instead of u and v and we shall use the index notation to denote the components of
the matrices of the first two fundamental forms of the surface. More precisely, for the
coefficients of the first fundamental form we shall write

g11 = E, g12 = g21 = F, g22 = G, (4.17.18)
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while for the coefficients of the second fundamental form we shall write

h11 = D, h12 = h21 = D′, h22 = D′′. (4.17.19)

Also, we shall denote by g the determinant of the matrix of the first fundamental form.
Finally, we shall denote by r′i the derivative of r with respect to the coordinate ui and by
r′′ij – the second order derivative of r with respect to the coordinates ui and u j, where i
and j can take the values 1 and 2. Clearly, as we always assume that the surfaces are as as
smooth as one expects to be (i.e., in this context, at least C2), the order of differentiation
is not relevant, therefore we shall always have r′′ij = r′′ji .

Theorem (Ossian Bonnet, 1860). Let U ⊂ R2 be an open set. On U there are given the
symmetric matrix functions

gi j = gi j(u1, u2), hi j = hi j(u1, u2), i, j = 1, 2 (4.17.20)

of classes C2 and C1, respectively, such that for each (u1, u2) ∈ U the quadratic for asso-
ciated to the bilinear form whose matrix is (gi j) is positively defined and, moreover, the
components of the two functions verify the Gauss and Codazzi-Mainardi compatibility
conditions. We choose u0 = (u1

0, u
2
0) ∈ U, p0 ∈ R and the vectors

r′1
(0), r′2

(0), n(0) ∈ Tp0R
3, (4.17.21)

such that r′i
(0)
·r′j

(0) = gi j(u0), n(0)·r′i
(0) = 0, n(0)·n(0) = 1, while the triple {r′1

(0), r′2
(0), n(0)}

is a right-handed basis of the vector space Tp0R
3. Then there exists a single regular pa-

rameterized surface of class C3, r : V → R3, with V ⊂ U – an open set, such that the
following conditions are fulfilled:

(i) r(u0) = p0 (the surface “passes” through p0 for u = u0).

(ii)
∂r
∂ui (u0) = r′i

(0), i = 1, 2.

(iii) n(u0) = n(0).

(iv) gi j and hi j are the coefficients of the first two fundamental forms of the parameter-
ized surface r (with respect to the orientation of r defined by the unit normal vector
n).
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Proof. We consider the system of partial differential equations
∂r′i
∂u j =

2∑
k=1
Γk

i jr
′
k + hi jn,

∂n
∂ui = −

2∑
j=1

2∑
k=1

hi jg jkr′k

(4.17.22)

with respect to the unknown functions r′1, r
′
2, n, where the coefficients Γk

i j are computed
with the formula (4.17.8)–(4.17.10). This is a linear and homogeneous system which is
completely integrable, because the compatibility conditions

∂2r′i
∂u j∂uk =

∂2r′i
∂uk∂u j

∂2n
∂u j∂uk =

∂2n
∂uk∂u j

(4.17.23)

are equivalent, as we saw, to the Gauss-Weingarten equations, which are satisfied, by
hypothesis. Therefore, from standard results from the theory of partial differential equa-
tions of first order, it follows that there exists an open neighborhood W ⊂ U of the point
u0 and a set of three C2 vector functions5 r′1, r

′
2,n : W → R3, which are solutions of the

system (4.17.22), with the given initial condition at the point u0.
Let us notice, also, that a set of initial conditions as in the theorem always exists,

due, mainly, to the fact that the quadratic form associated to gi j is positively defined.
Indeed, we can make, for instance, the following choice:

r′1
(0) =

{ √
g11(u0), 0, 0

}
r′2

(0) =

 g12(u0)√
g11(u0)

,

√
g11(u0)g22(u0) − (g12(u0))2√

g11(u0)
, 0


n(0) = {0, 0, 1}

. (4.17.24)

We leave to the reader to check that, indeed, these vectors verify the conditions from the
hypothesis.

We consider, now, the system of partial differential equations
∂r
∂u1 = r′1,

∂r
∂u2 = r′2

. (4.17.25)

5The order of smoothness is with one unit greater then the smallest order of smoothness of the coeffi-
cients, as the system is of first order.
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This system is, again, completely integrable, because the integrability condition

∂2r
∂ui∂u j =

∂2r
∂u j∂ui (4.17.26)

is equivalent to the condition
∂r′i
∂u j =

∂r′j
∂ui (4.17.27)

which is true, as one can convince oneself looking at the first equation (4.17.22), because
of the symmetry of the second matrix (h ji = hi j) and because of the symmetry of the
Christoffel’s coefficients in the lower indices. Therefore, applying again the existence
and uniqueness theorem, it follows that there exists an open neighborhood V ⊂ W ⊂ U
of u0 and a single C3 function r : V → R3 such that r(u0) = p0.

We are not done yet, because we still have to show that gi j and hi j are the first two
fundamental forms of the parameterized surface defined by r. Apparently, we also have
to show that r is regular. But this follows immediately if we prove that g is the first
fundamental form, because

gi j =
∂r
∂ui ·

∂r
∂u j

and then
∂r
∂ui ×

∂r
∂u j , 0,

because the square of the norm of this vector is not zero (as it is equal to the determinant
of the first fundamental form, which is strictly greater then zero, since the form is pos-
itively defined). It is, actually, enough to show that, all over V , the following relations
are fulfilled: 

r′i · r
′
j = gi j,

r′i · n = 0,
n · n = 1

. (4.17.28)

To this end, we shall compute the derivatives with respect to the coordinates of the scalar
products, taking into account the Gauss-Weingarten equations and we get the system of
first order partial differential equations:

∂(r′i · r
′
j)

∂uk =
2∑

l=1
Γl

ik(r′l · r
′
j) +

2∑
l=1
Γl

jk(r′l · r
′
i) + hik(r′j · n) + h jk(r′i · n)

∂(r′j · n)

∂ui = −
2∑

l,k=1
hilglk(r′k · r

′
j) +

2∑
l=1
Γl

i j(r
′
l · n) + hi j( n · n)

∂( n · n)
∂ui = −2

2∑
l,k=1

hilglk(r′k · n)

. (4.17.29)



4.17. The fundamental equations of a surface 171

As probably the reader suspects already (and it is asked to check for himself), this system
is, again, completely integrable, which means that it has a single solution for prescribed
initial values. We “guess” that this solution is, exactly, (4.17.28) and we shall check
this in the following. For the last equation, there is nothing to check: if we substi-
tute (4.17.28), we get, simply, 0 = 0. For the second equation, after the substitution, the
left-hand side is zero, while the right-hand side becomes:

−

2∑
l,k=1

hilglkgk j + hi j = −

2∑
l=1

hilδ
l
j + hi j = −hi j + hi j = 0,

so we are done. Finally, the first equation becomes

∂gi j

∂uk =

2∑
l=1

Γl
ikgk j +

2∑
l=1

Γl
jkgli

which is very easy to prove, using the definition of the Christoffel’s coefficients. Thus,
the functions (4.17.28) give a solution of the system (4.17.29), which, obviously, verify
the initial conditions of the theorem. As the solution is unique, for the given initial
conditions we have 

r′i · r
′
j = gi j,

r′i · n = 0,
n · n = 1
(r′1, r

′
2, n) > 0

, (4.17.30)

which means that we proved already that

- r′i are the derivatives of r;

- n is the unit normal of the parameterized surface given by r;

- gi j are the coefficients of the first fundamental form of r.

We are left with the proof of the fact that hi j are the coefficients of the second fundamen-
tal form of r. Let us denote, for the moment, by bi j these coefficients. As we know, they
are given by

bil = −n′i · r
′
l =

2∑
j,k=1

hi jg jkr′k · r
′
l =

2∑
j,k=1

hi jg jkgkl =

2∑
j=1

hi jδ
j
l = hil,

which concludes the proof of the Bonnet’s theorem. �
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4.18 The Gauss’ egregium theorem

The theorem that we are going to prove in this section (and which is implicit in the
equations of Gauss above) is one of the most important theorem in classical differential
geometry. Not by accident Gauss called it, in his famous Disquisitiones circa superfi-
cies curvas “theorema egregium”, i.e. the remarkable theorem. As we just saw in the
previous section, the total curvature of a surface in R3 can be expressed in terms of the
determinants of the first two fundamental forms of the surface. This would mean, in
principle, that the total curvature depends both on the intrinsic data (the first fundamen-
tal form) and extrinsic data (i.e. the second fundamental form). It turns out, however,
that the situation is different, i.e. we have:

Theorem 4.4 (Gauss, 1827). The total curvature of a surface of class at least C3 depends
only on the coefficients of the first fundamental form of the surface and their first order
derivatives with respect to the coordinates.

Proof. There exists several proofs of this theorem (which is called, in many books, us-
ing the Latin term used by Gauss, namely theorema egregium. The original proof, given
by Gauss in 1827, is quite complicated. The proof we are going to give here is the first
different proof, belonging to the German mathematician Richard Baltzer (1867)6, al-
though Struik credits the formula which will be established to the Italian mathematician
Brioschi. We start with the formula

Kt =
DD′′ − D′2

EG − F2 ,

which we rewrite in the form

Kt(EG − F2) = DD′′ − D′2, (4.18.1)

or, having in mind the expressions of the coefficients of the second fundamental form,

Kt(EG − F2)2 = (r
′′

u2 , r
′

u, r
′

v) · (r
′′

v2 , r
′

u, r
′

v) − (r
′′

uv, r
′

u, r
′

v)2. (4.18.2)

The right hand side of the equation (4.18.2) can be written in a more convenient form if
we notice that each term is, in fact, the product of two determinants. We shall use, now,

6The name of Richard Baltzer (1818–1887) is not well known today, however, in the second half of
the nineteenth century he was considered an important geometer. For the history of mathematics, there are
important his “Elementhe der Mathematik”, published in several editions, where was mentioned, for the
first time, the Non-Euclidean geometry.
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the following formula for the product of two determinants, known from vector algebra:

(a,b, c) · (d, e, f) =

∣∣∣∣∣∣∣∣∣
a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

∣∣∣∣∣∣∣∣∣ . (4.18.3)

Using the formula (4.18.3), the formula (4.18.2) becomes

Kt(EG − F2)2 = (r
′′

u2 · r
′′

v2 − r
′′

uv
2
)(EG − F2)+

+

∣∣∣∣∣∣∣∣∣∣
0 r′′u2 · r

′

u r′′u2 · r
′

v
r′u · r

′′

v2 E F

r′v · r
′′

v2 F G

∣∣∣∣∣∣∣∣∣∣−
−

∣∣∣∣∣∣∣∣∣
0 r′′uv · r

′

u r′′uv · r
′

v
r′′uv · r

′

u E F
r′′uv · r

′

v F G

∣∣∣∣∣∣∣∣∣ .
(4.18.4)

Thus, already a part of the terms involved in the computation of the total curvature are
expressed in terms of the coefficients of the first fundamental form. As one can see
immediately, the remaining terms are of two kinds: either a product of a second order
derivative of r and a first order one, either a product of two second order derivatives. The
first kind of terms are easier to be taken care of. Indeed, starting from the definition of
the coefficients of the first fundamental form, E = r′u · r

′

u, F = r′u · r
′

v, G = r′v · r
′

v one
obtains, differentiating with respect to the coordinates, the following expressions:

r′′u2 · r
′

u = 1
2 E′u

r′′uv · r
′

u = 1
2 E′v

r′′v2 · r
′

v = 1
2G′v

r′′uv · r
′

v = 1
2G′u

r′′u2 · r
′

v = F′u −
1
2 E′v

r′′v2 · r
′

u = F′v −
1
2G′u

. (4.18.5)

Differentiating once more the fourth equation above with respect to u and the fifth with
respect to v and subtracting them side by side, we get also the expression for the products
of second order derivatives of r:

r
′′

u2 · r
′′

v2 − r
′′

uv
2
= −

1
2

G′′u2 + F′′uv −
1
2

E′′v2 . (4.18.6)
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Combining everything we obtained, we get the following expression (due, as we said
before, to Baltzer) for the total curvature

Kt =
1

(EG − F2)2

∣∣∣∣∣∣∣∣∣∣∣
−1

2G′′
u2 + F′′uv −

1
2 E′′

v2
1
2 E′u F′u −

1
2 E′v

F′v −
1
2G′u E F

1
2G′v F G

∣∣∣∣∣∣∣∣∣∣∣−

−
1

(EG − F2)2

∣∣∣∣∣∣∣∣∣∣∣
0 1

2 E′v
1
2G′u

1
2 E′v E F
1
2G′u F G

∣∣∣∣∣∣∣∣∣∣∣ ,
(4.18.7)

which concludes the proof, as we got an expression of Kt which, indeed, depends only on
the coefficients of the first fundamental form and their derivatives up to second order. �

Exercise 4.18.1 (Frobenius). Show that the total curvature of a surface can be written,
also, in the following form, easier to remember:

Kt = −
1

4(EG − F2)2

∣∣∣∣∣∣∣∣∣
E E′u E′v
F F′u F′v
G G′u G′v

∣∣∣∣∣∣∣∣∣+
+

1

2
√

EG − F2

{
∂

∂u

(
F′v −G′u
√

EG − F2

)
+
∂

∂v

(
F′u − E′v
√

EG − F2

)}
.

(4.18.8)

In the particular case of an orthogonal coordinate system (F ≡ 0), we get the following
nice “divergence” expression for the total curvature:

Kt = −
1

2
√

EG

{
∂

∂u

(
G′u
√

EG

)
+
∂

∂v

(
E′v
√

EG

)}
, (4.18.9)

which will be used later for some integral formulae.

Exercise 4.18.2 (Liouville). Prove the following (slightly asymmetric) formula for the
total curvature of a surface:

Kt = −
1

2
√

EG − F2

 ∂

∂u

G′u +
F
GG′v − 2F′v

√
EG − F2

 + ∂

∂v

 E′v −
F
GG′u

√
EG − F2


 . (4.18.10)
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4.19 Geodesics

4.19.1 Introduction

The curves we are going to study in this chapter are direct generalizations of the straight
lines. More specifically, they are curves that projects on the tangent planes of the surface
as straight lines. There are many different approaches to geodesics. We chose here the
one we find more elementary.

4.19.2 The Darboux frame. The geodesic curvature and geodesic torsion

Let (I, ρ) be a parameterized curve whose support lies on a surface S and let M = ρ(t0)
be a point of the curve, with t0 ∈ I. As ρ is, in particular, a space curve, we can attach
to it the Frenet frame at the point M, {M; τ, ν,β}. As we saw in the first part of the book,
this frame is good enough if we want to investigate the curve ρ as an independent object,
but it is not very helpful if one wishes to study the connections between the curve and
the surface. To this end, we shall introduce another orthonormal frame, which involves
both vectors related to the curve and to the surface. The first vector of the new frame
will be still the unit tangent vector of the curve, τ. The second, related, this time to the
surface, is the unit normal of the surface, n. The third one, let it be denoted by N, will
be chosen in such a way that the basis {τ,N,n} be direct, or in other words, such that
(τ,N,n) = 1. This means, of course, that

N = n × τ.

Clearly, N lies in the normal plane of the curve at M, therefore it will be called the unit
tangential normal vector of the curve. The name tangential comes, of course from the
fact that N lies, also, in the tangent plane of the surface at M.

The frame {M; τ,N,n} is called the Darboux frame or the Ribaucour-Darboux frame
of the surface S along the curve ρ.

The next step we are going to make is to compute the derivatives of the vectors of
the Darboux frame and to obtain a set of linear differential equation which is similar to
the Frenet frame and which will play an important role in the following sections. To get
them, the intention is exactly to use the Frenet equations. Therefore, we shall start by
expressing the vectors N and n in terms of the vectors of the Frenet frame. We denote
by θ the angle between the vectors ν and n. Then, as one can see immediately thatν = cos(N, ν) · N + sin(N, ν)n

β = cos(N,β) · N + sin(N,β)n
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As (N, ν) = π
2 and (N,β) = π − θ, we getν = sin θN + cos θn

β = − cos θN + sin θn
.

Conversely, we get N = sin θ · ν − cos θ · β
n = cos θ · ν + sin θ · β

.

Now, the derivatives of the vectors of the Darboux frame with respect to the arclength of
the curve can be expressed in terms of these vectors as

τ = a(s) · N + b(s)n
N′ = c(s)τ + d(s) · n
n′ = e(s) · τ + f (s) · N,

(4.19.1)

where a, b, c, d, e, f are smooth functions of the arclength. We remind that the derivative
of a vector of the Darboux frame is perpendicular on that vector, because the frame is
orthonormal. For the same reason, we deduce immediately that the six coefficients are
not independent and, in fact, we have the relations: c = −a, e = −b, f = −d, therefore
the system (4.19.1) becomes 

τ = a(s) · N + b(s)n
N′ = −a(s)τ + d(s) · n
n′ = −b(s) · τ − d(s) · N,

(4.19.2)

We shall express now the quantities a, b, d in terms of the characteristics of the curve and
the angle θ. We notice, first of all, that, from the first of the Frenet’s formula, we get

τ′ = kν = k(sin θ · N + cos θ · n),

hence, identifying the coefficients with those of the first equation of the system (4.19.2),
we obtain

a = k · sin θ; b = k · cos θ. (4.19.3)

The quantity k · cos θ is already known to us: it is nothing but the normal curvature
kn of the surface that was studied previously. The function k · sin θ, instead, is new. We
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will denote it by kg and we will call it geodesic or tangential curvature of the curve7. To
find the quantity d, we start from the relation

N = sin θ · ν − cos θ · β.

By differentiating with respect to the arclength of the curve, we get, using the last two
of the Frenet’s formulae:

N′ = θ′ · sin θ · ν − sin θ(−k · τ + χ · β) + θ′ sin θ · β + χ · cos θ · ν =

= −k · sin θ · τ + (θ′ + χ) · (cos θ · ν + sin θ · β) =

= −k · sin θ · τ + (θ′ + χ) · n,

and, comparing with the second equation from (4.19.2), we get

d = θ′ + χ.

This function is denoted by χg and it s called the geodesic torsion. His geometric mean-
ing will be made clear later. Clearly, we cannot claim, as we did with the geodesic
curvature, that the geodesic torsion is the torsion of the projection of the curve on the
tangent plane, as the torsion of that curve is always zero, while the geodesic torsion of
the given curve is not, usually.

The geodesic curvature plays a much more important role in the differential geometry
of surfaces than the geodesic torsion does, so we start by focusing on it. We notice, to
begin with, that

kg = τ
′ · N = −τ · N′. (4.19.4)

Since, as we saw earlier, N = n × τ, one obtains for kg the expression

kg = τ
′ · N = τ′ · (n × τ),

i.e.
kg = (τ, τ′, n). (4.19.5)

This formula holds for naturally parameterized curves. Let us consider, now, an arbitrary
regular parameterized curve on S , given by the local equations u = u(t), v = v(t). We
have, therefore, r = r(u(t), v(t)). If we denote by a dot the differentiation with respect to
the parameter t along the curve, we get

τ ≡
dr
ds
=

dr
dt

dt
ds
=

1
ṡ
· ṙ,

7Here the term “tangential” refers to the tangent plane of the surface, not to the tangent line of the curve.
In fact, it can be shown that the geodesic curvature at a point of a curve lying on a surface is the signed
curvature of the projection of the curve on the tangent plane to the surface at that particular point.
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therefore
τ′ =

dτ
ds
=

1
ṡ3 (r̈ · ṡ − ṙs̈).

Thus, for the geodesic curvature one gets

kg = (τ, τ′,n) =
(
1
ṡ

ṙ,
1
ṡ3 (r̈ · ṡ − ṙs̈),n

)
=

1
ṡ4 (ṙ, r̈ · ṡ − ṙs̈,n) =

1
ṡ4 (ṙ, ṡ · r̈,n),

i.e.
kg =

1
ṡ3 (ṙ, r̈,n). (4.19.6)

The formulas we got so far for the geodesic curvature use mixture of information
about the curve and about the surface, but they don’t use explicitly the things we usually
compute when we are given a local parameterization of a surface or, more generally,
a regular parameterized surface, namely the coefficients of the first two fundamental
forms. So, the next step will be to obtain a formula for the geodesic curvature in terms of
the coefficients of the fundamental forms, when the curve is given by its local parametric
equations with respect to a local parameterization of the surface. We shall discover, in
fact, that the geodesic curvature can be expressed in terms of the coefficients of the first
fundamental form and they first order partial derivatives with respect to the coordinates.

To simplify the notations, we shall use, for a while, the index notations. In other
words, we shall denote the coordinates with u1 and u2, instead of u and v, while the
first partial derivatives of the radius vector r with respect to the coordinates will be
denoted by r′i and those of second order by r′′i j, i, j = 1, 2. Moreover, we shall use the
Einstein’s summation convention: every time an index enter twice in a monomial, once
in an inferior position and once in a superior one, then one makes summation after all
the allowed values of the index (in our case, 1 and 2). Thus, an expression of the form
aiui should be read as

aiui = a1u1 + a2u2.

Going back to our problem, we have, with the newly introduced notations:ṙ ≡ dr
dt = r′i u̇

i

r̈ = r′′i ju̇
iu̇ j + r′kük .

The decomposition of the second order partial derivatives of the radius vectors in terms
of the basis {r′1, r

′
2,n} is already known to us: it can be described using the Christoffel’s

coefficients and the second fundamental form as

r′′i j = Γ
k
i jr
′
k + hi j · n,
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where, as we know, hi j are the coefficients of the second fundamental form of the surface.
Thus, we have

r̈ =
(
Γk

i jr
′
k + hi j · n

)
u̇iu̇ j + r′kük =

(
ük + Γk

i ju̇
iu̇ j

)
r′k + hi ju̇iu̇ jn

or
r̈ =

(
ük + Γk

i ju̇
iu̇ j

)
r′k + ϕ2(ṙ, ṙ) · n.

With these in hand, we can write now

kg =
1
ṡ3 (ṙ, r̈,n) =

1
ṡ3

(
u̇mr′m,

(
ük + Γk

i ju̇
iu̇ j

)
r′k + ϕ2(ṙ, ṙ),n

)
=

=
1
ṡ3

[
u̇1

(
ü2 + Γ2

i ju̇
iu̇ j

)
− u̇2

(
ü1 + Γ1

i ju̇
iu̇ j

)] (
r′1, r

′
2,n

)
.

But (
r′1, r

′
2,n

)
=

(
r′1 × r′2

)
· n =

(
r′1 × r′2

)
·

r′1 × r′2
‖r′1 × r′2‖

= ‖r′1 × r′2‖ =
√

g,

where g is the determinant of the first fundamental form, whence

kg =

√
g

ṡ3

[
u̇1

(
ü2 + Γ2

i ju̇
iu̇ j

)
− u̇2

(
ü1 + Γ1

i ju̇
iu̇ j

)]
. (4.19.7)

If, in particular, the curve is naturally parameterized, we get

kg =
√

g
[
(u1)′

(
(u2)′′ + Γ2

i j(u
i)′(u j)′

)
− (u2)′

(
(u1)′ + Γ1

i j(u
i)′(u j)′

)]
. (4.19.8)

In the traditional notations, the formula for the geodesic curvature of a naturally para-
meterized curve is

kg =
√

EG − F2
[
Γ2

11u′3 +
(
2Γ2

12 − Γ
1
11

)
u′2v′ +

(
Γ2

22 − 2Γ1
12

)
u′v′2−

−Γ1
22v′3 + u′v′′ − u′′v′

]
.

(4.19.9)

This equation can also be written in a more elegant form as

kg =
√

EG − F2 det
(
u′ u′′ + u′2Γ1

11 + 2u′v′Γ1
12 + v′2Γ1

22
v′ v′′ + u′2Γ2

11 + 2u′v′Γ2
12 + v′2Γ2

22

)
. (4.19.10)

If, in particular, the surface S is the plane, with the Cartesian coordinates on it, then
the determinant of the first fundamental form is, of course, one, as the matrix of the
fundamental form is the unit matrix, while all the Christoffel’s coefficients vanish. As a
consequence, in this situation the geodesic curvature of the curve (which is, in this case,
a plane curve), is nothing but its signed curvature:

kg = u′v′′ − u′′v′ ≡ k±.

Remark. It can be shown that, in fact, the geodesic curvature of a curve on a surface is
nothing but the signed curvature of the projection of the curve on the tangent plane.
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4.19.3 Geodesic lines

Definition 4.19.1. Let S be a surface. A parameterized curve ρ : I → S is called a
geodesic line, or simply, a geodesic if, at each point, its geodesic curvature vanishes.

Remark. According to the formula (4.19.12), the geodesic curvature of a curve can be
written as

kg = (τ, τ′, n).

On the other hand, from the first formula of Frenet, τ× τ′ = kβ, therefore, kg vanishes at
a point of a curve on the surface if and only if the binormal of the curve is perpendicular
on the normal of the surface at that point or, in other words, the geodesic curvature
vanishes if and only if the normal of the surface is contained in the osculating plane.
Thus, the geodesic lines are exactly those lines on the surface for which the osculating
plane at each of their points contain the normal of the surface at that point. In fact, in
many books, this property is taken as the definition of the geodesics.

Another remark that should be made is that since, as we noticed earlier, the geodesic
curvature is the signed curvature of the projection of the curve on the tangent plane,
we can say that the geodesics are those curves which project on each tangent plane of
the surface after a straight line. In this sense, we might say that the geodesics are the
straightest lines on the surfaces.

The formula 4.19.9 leads to

Theorem 4.5. The differential equation of the geodesic lines is

Γ2
11u′3 +

(
2Γ2

12 − Γ
1
11

)
u′2v′ +

(
Γ2

22 − 2Γ1
12

)
u′v′2 − Γ1

22v′3 + u′v′′ − u′′v′ = 0. (4.19.11)

Also, from (4.19.10) we can deduce that

Theorem 4.6. The geodesic lines verify the system of differential equationsu′′ + u′2Γ1
11 + 2u′v′Γ1

12 + v′2Γ1
22 = 0

v′′ + u′2Γ2
11 + 2u′v′Γ2

12 + v′2Γ2
22 = 0

. (4.19.12)

There is, apparently, a contradiction between the previous two theorems, as the first
claim that the geodesics are solutions of a single equations, while the second – that they
are a solution of a system of different equation. In fact, however, the two equations of the
system (4.19.12) are not independent, because we impose the geodesics to be naturally
parameterized, therefore, between the functions u and v there is an extra relation.

The existence (locally, at least) of geodesics passing through a point of a surface and
having at that point a given tangent vector is a consequence of standard results in the
theory of ordinary differential equations. Finding geodesics, is, usually, a very delicate
business and can be done explicitly only in special situations.
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Examples of geodesics

The geodesics of the plane. By the geometrical interpretation of the geodesics, as
the curves that project on the tangent plane on straight lines, we deduce immediately
that the geodesics of the plane are the straight lines and only them. On the other hand,
by using cartesian coordinates, we fined immediately that the Christoffel’s coefficients
vanish identically, therefore the equations of geodesics becomeu′′ = 0

v′′ = 0
,

which lead to u(s) = a1s+b1, v(s) = a2s+b2, i.e., again, the geodesics are straight lines.

The geodesics of the sphere. The geodesics of the sphere can be found very easily
from their interpretation as being those curves for which the osculating plane contains
the normal to the surface. As we know, in the case of the sphere all the normals are
passing through the center of the sphere, therefore the osculating planes should pass, all
of them through the center, which leads immediately to the idea that the geodesics are
arcs of great circles of the sphere.

Also, using a standard parameterization of the sphere (with spherical coordinates),
we can find (do that!) the equations of the geodesics as:θ̈ − sin θ cos θϕ̇2 = 0

ϕ̈ + 2 cot θθ̇ϕ̇ = 0
.

We assume that the explicit equation of the geodesic is θ = θ(ϕ). Then

θ̇ =
dθ
ds
=

dθ
dϕ
· ϕ̇,

θ̈ =
d
ds

(
dθ
dϕ

)
· ϕ̇ +

dθ
dϕ
ϕ̈ =

dθ
dϕ
· ϕ̈ +

d2θ

dϕ2 · ϕ̇
2.

Therefore, the first equation of the system becomes:

ϕ̈ ·
dθ
dϕ
+

d2θ

dϕ2 · ϕ̇
2 − sin θ cos θ · ϕ̇2 = 0.

On the other hand, from the first equation,

ϕ̈ = −2 cot θθ̇ · ϕ̇ = −2 cot θ
dθ
dϕ
· ϕ̇2,
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hence:

ϕ̇2
(

d2θ

dϕ2 − 2 cot θ ·
dθ
dϕ
− sin θ cos θ

)
= 0.

We have two possibilities: either ϕ̇ = 0, i.e. ϕ = const, and, in this case, the curve is,
obviously, a great circle of the sphere (a meridian), either

d2θ

dϕ2 − 2 cot θ ·
dθ
dϕ
− sin θ cos θ = 0.

In this case, we make the substitution z = cot θ and, after a straightforward computation,
we get

d2z
dϕ2 + z = 0,

and this equation has the general solution

z = cot θ = A cosϕ + B sinϕ

or
A sin θ cosϕ + B sin θ sinϕ − cos θ = 0,

which is the equation of a great circle, lying in the plane passing through the origin and
having as normal vector the vector (A, B,−1).

4.19.4 Liouville surfaces

Definition 4.19.2. A surface is called a Liouville surface if it can be parameterized
locally in such a way that the first fundamental form can be written as

ds2 = (U(u) + V(v))(du2 + dv2), (4.19.13)

where U and V are smooth functions of a single variable.

These surfaces have been introduced by the French mathematician Joseph Liouville
in the Note III of the 5th edition of the book of Gaspard Monge, Application. In partic-
ular, the surfaces of revolution are examples of Liouville surfaces. The most important
characteristic of Liouville surfaces is the fact that their geodesics an be found through
quadratures. This is exactly what we are going to prove in the rest of this section.

First of all, it is an easy matter to prove that the equation of the geodesics for the
metric (4.19.13) can be written as

(U′v′ − V ′u′)(u′2 + v′2) + 2(U + V)(u′v′′ − v′u′′) = 0. (4.19.14)
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Here, for the functions U and V the prime denotes the derivative with respect to u and v,
respectively, while for the coordinate functions u and v the prime denotes the derivative
with respect to the parameter t along the geodesic. Of course, U and V are, both, func-
tions of t, through the coordinate functions. Therefore, the equation of geodesics can be
rewritten as

u′

v′
dU
dt
−

v′

u′
dV
dt
+ 2(U + V)

u′v′′ − v′u′′

u′2 + v′2
= 0. (4.19.15)

We see that this equation actually does not involve the coordinate functions u and v, but
only their derivatives. We substitute them with other two functions of t, ρ and α, defined
by u′ = ρ cosα

v′ = ρ sinα
. (4.19.16)

In the sequel, the equation of the geodesics becomes

sin2 α
dU
dt
− cos2 α

dV
dt
+ 2(U + V) sinα cosα

dα
dt
= 0.

This equation can be also written as

d
dt

(
U sin2 α − V cos2 α

)
= 0,

whence
U sin2 α − V cos2 α = a,

where a is a constant. Returning to the old coordinate functions, we get

v′2U − u′2V = a(u′2 + v′2),

whence ∫
du
√

U − a
= ±

∫
dv
√

V + a
+ b, (4.19.17)

where b is another integration constant.
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CHAPTER 5

Special classes of surfaces

5.1 Ruled surfaces

Intuitively speaking, the ruled surfaces are the surfaces generated by a moving straight
line, which is subject to a further condition, usually this condition being that the moving
line remains tangent to a given surface or intersects a given regular space curve. More
precisely

5.1.1 General ruled surfaces

After the plane, the ruled surfaces are, no doubt, the simplest surfaces. We recall that a
surface is called ruled if it is generated by a straight line (the ruling, moving in space,
lying all the time on a given curve, called the directrix. Clearly, once the ruled surface
was defined, the directrix can be replaced by another curve , obtained, for instance, by
sectioning the surface by a plane or a sphere. In particular, it is, usually, convenient to
choose a directrix which is, at each point, orthogonal to the ruling passing through that
point (in other words, the directrix is an orthogonal trajectory of the rulings. As we
shall see shortly, this particular choice of the ruling has as effect the diagonalization of
the first fundamental form of the surface.

The simplest ruled surfaces are the cylindrical surfaces, for which the rulings are
always parallel to a fixed direction and the conical surfaces, in the case of which the
rulings are passing through a fixed point. The ruled surfaces have been studied in details
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Figure 5.1: The hyperboloid with one sheet and its rulings

for the first time by the French geometer Gaspard Monge, at the end of the XVIIIth
century and most of the important results in the field belong to him or to some of his
students. In the figure 5.1.1 we represented the hyperboloid of rotation with one sheet,
together some of its rulings.

Another way of getting interesting ruled surfaces is to take as rulings the axes of
the Frenet frame of a space curve. For instance, in the figure 5.1.1 we represented the
surface described by the binormals of the Viviani’s temple.

The parameterization of a ruled surface

We assume that the directrix of the surface has a parameterization of the form

ρ = ρ(u), u ∈ I,

where I is an interval on the real axis. For each u ∈ I, we denote by b(u) the versor of the
ruling passing through the point ρ(u). Then, if M is a point on this ruling, its coordinates
will be determined by the relation

r = r(u, v) = ρ(u) + vb(u), (5.1.1)

where v is the parameter along the ruling, i.e. if M0 = ρ(u), then we have

−−−−→
M0M = vb(u).
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Figure 5.2: The surface of binormals of the Viviani’s temple

The relation 5.1.1 provides a parameterization of the ruled surface,

r : I × R→ S .

This parameterization is not, usually, global, as the parameterization of the directrix is
not global.

With respect to this parameterization, the rulings will be coordinate lines (u = const),
and the directrix is, equally, a coordinate line (v = 0). Generally, the coordinate lines
v = const have the property that they are “parallel” to the directrix, in the sense that all
the points from such a coordinate curve lie at the same distance (equal to |v|) from the
directrix, when we measure the distance along the ruling passing through each point.

The tangent plane and the first fundamental form of a ruled surface

To compute the coefficients of the first fundamental form of a ruled surface we need,
first of all, the partial derivatives of the radius vector of a point of the surface. We have,
obviously,

r′u = ρ
′ + bb′; r′v = b′u. (5.1.2)
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Thus, the coefficients of the first fundamental form of the surface will be

E ≡ r′u · r
′
u = ρ

′2 + 2vρ′ · b′ + v2b′2;

F ≡ r′u · r
′
v = ρ

′ · b;

G ≡ r′v · r
′
u = 1.

(5.1.3)

It follows that the first fundamental form of a ruled surface can be written as:

ds2 =

(
ρ′2 + 2vρ′ · b′ + v2b′2

)
du2 + 2(ρ′ · b) dudv + dv2. (5.1.4)

To find the tangent plane at a point of a ruled surface, we notice, first of all, that the
direction of the normal to the plane (and, hence, to the surface) at a given point is given
by the vector r′u × r′v, i.e. by the vector

N ≡ r′u × r′v = ρ
′ × b + v

(
b′ × b

)
. (5.1.5)

Therefore, if R is the position vector of a point from the tangent plane to the surface at
a point corresponding to the pair of parameters(u, v), then the equation of the tangent
plane can be written under the form

(R − r) · N = 0,

i.e.
(R − ρ − vb) ·

(
ρ′ × b + v

(
b′ × b

))
= 0

or (
R, ρ′,b

)
+ v

(
R,b′,b

)
−

(
ρ, ρ′,b

)
− v

(
ρ,b′,b

)
= 0

or, also, [
R × ρ′ + v

(
R × b′

)
− ρ × ρ′ − v

(
ρ × b′

)]
· b = 0. (5.1.6)

A characteristic property of the ruled surfaces is described by the following proposi-
tion:

Proposition 5.1.1. The tangent planes to a ruled surface in point located along the same
ruling, belong to the pencil of planes determined by that ruling, or, to put it another way,
the tangent plane at a point of a ruled surface contains the ruling passing through that
point.
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Proof. Since the ruling and the tangent plane already have a point in common (the very
point of tangency), it is enough to prove that the ruling is parallel to the tangent plane
or, which is the same, that it is perpendicular to the normal to the surface at the tangency
point. We have, indeed,

N · b =
[
ρ′ × b + v

(
b′ × b

)]
· b =

(
ρ′,b,b′

)
+ v

(
b′,b,b′

)
= 0.

�

The proposition we just proved indicates how varies the tangent plane to a ruled
surface along a ruling: it just rotates around the ruling. In other words, its normal vector
stays all the time parallel to a fixed plane, which is perpendicular to the considered
ruling.

5.1.2 The Gaussian curvature of a ruled surface

We start, of course, from the parameterization (5.1.1). Then we have

r′u = ρ
′ + vb′, r′v = b.

Therefore, for the first fundamental form, we will get

E = r′u · r
′
u = (ρ′ + vb′) · (ρ′ + vb′) = ρ′2 + 2vρ′ · b′ + v2b′2,

F = r′u · r
′
v = (ρ′ + vb′) · b = ρ′ · b,

while
G = r′v · r

′
v = 1,

since b is a versor. Let H be the determinant of the first fundamental form. Then, for the
coefficients of the second fundamental form, we will get

D =
1
H

(
r′u, r

′
v, r
′′

u2

)
=

1
H

(
ρ′ + vb′,b, ρ′′ + vb′′

)
,

D′ =
1
H

(
r′u, r

′
v, r
′′
uv
)
=

1
H

(
ρ′ + vb′,b,b′

)
=

1
H

(
ρ′,b,b′

)
,

D′′ =
1
H

(
r′u, r

′
v, r
′′

v2

)
= 0.

Thus,
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Proposition 5.1.2. The total curvature of a ruled surface given by the local parameter-
ization (5.1.1) is given by

Kt =
DD′′ − D′2

EG − F2 = −
(ρ′,b,b′)2

‖(ρ′ + vb′) × b‖2
. (5.1.7)

The curvature is always negative and it vanishes if and only if(
ρ′,b,b′

)
= 0. (5.1.8)

5.1.3 Envelope of a family of surfaces

In this section, a surface will always be a parameterized surface. The theory of envelopes
of surfaces is analogue to the theory of envelopes of plane curves, therefore there will
be no proofs, as the proofs are completely analogue to the ones we provided for plane
curves.

Definition 5.1.1. Let
r = r(u, v, λ) (5.1.9)

be a family of surfaces. The envelope of the family (if there is any) is a surface which is
tangent to all the surfaces from the family. The contact between the envelope and each
surface is made along a curve which is called a characteristic. Thus, the envelope is the
geometrical locus of the chracteristics of the family of surfaces.

Proposition 5.1.3. The points of the envelope of the family (5.1.9) verify, beside this
equation, the equation

(r′u, r
′
v, r
′
λ) = 0. (5.1.10)

Of course, as in the case of plane curves, these equations are also verified by the
singular points of the surfaces and to get the envelope, we have to eliminate them first.

If the family of surfaces is given implicitly, i.e. through the equation

F(x, y, z, λ) = 0, (5.1.11)

then to get the envelope, we have to add to this equation the equation

F′λ(x, y, z, λ) = 0, (5.1.12)

as we did in the case of plane curves. Something that is specific to the theory of envelopes
of surfaces is the so-called regression edge. Let us assume that we have a family of
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surfaces, given, say, implicitly. Then we can form the system:
F(x, y, z, λ) = 0,
F′λ(x, y, z, λ) = 0
F′′
λ2(x, y, z, λ) = 0

. (5.1.13)

The first two equations of this system are the equations of the family of characteristic
lines of the family of surfaces. If the system is compatible, then what we find solving it
is a curve which, at each point, is tangent to one of the characteristics, in other words,
it is the envelope of the characteristics. This envelope (when exists), it is called the
regression edge of the envelope of the family of surfaces.

An example of envelope. We consider the family of spheres of constant radius, with
the center of a given circle, verifying the hypothesis that the radius of the circle is greater
than the radius of the spheres. Then the envelope of this family is, as one can see imme-
diately, the torus (see the figure 5.1.3).

Figure 5.3: The torus as envelope of spheres

5.1.4 Developable surfaces

There is a subclass of ruled playing an important role in differential geometry, the so-
called developable surfaces:

Definition 5.1.2. A ruled surface is called developable if the tangent plane to the surface
is the same at all the points of a ruling.

We would like to find conditions for a ruled surface to be developable. We have the
following result:
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Proposition 5.1.4. A ruled surface given by the equation

r(u, v) = ρ(u) + v · b(u)

is developable if and only if (
ρ′,b,b′

)
= 0. (5.1.14)

Proof. The invariance condition for the tangent plane along a ruling is equivalent to the
condition of invariance of the normal line to the surface along the same ruling. As we
saw previously, a normal vector to the surface is the vector

N(u, v) = ρ′(u) × b(u) + v
(
b′(u) × b(u)

)
.

Thus, the condition for the surface to be developable is that the direction N be indepen-
dent on the coordinate v. This may happen, obviously,in three situations:

1. The first component of the vector N vanishes, i.e.

ρ′(u) × b(u) = 0.

In this case, the vector N is constant only as direction, but its norm and orientation
might vary. As b is a versor, it cannot vanish, therefore the condition mentioned
above can be fulfilled in two situations:

(a) ρ′ = 0. In this case, the directrix degenerates to a point, therefore the surface
is conical.

(b) ρ′ ‖ b. In this case, the rulings are nothing but the tangents to the directrix,
i.e. the surface is generated by the tangents to a space curve.

2. The second component of the normal vector vanishes, i.e.

b′(u) × b(u) = 0.

From this relation follows, in fact, that the direction of b is fixed, i.e. the surface
is cylindrical.

3. The two components of the normal vector are parallel, i.e. we have

ρ′(u) × b(u) ‖ b′(u) × b(u).
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The three conditions we just listed are equivalent to the unique condition(
ρ′(u) × b(u)

)
×

(
b′(u) × b(u)

)
= 0.

On the other hand,(
ρ′ × b

)
×

(
b′ × b

)
=

(
ρ′,b′,b

)
b −

(
b,b′,b

)︸    ︷︷    ︸
=0

ρ′ = −
(
ρ′,b,b′

)
b,

which concludes the proof of the proposition. �

Corollary 5.1.1. A ruled surface is developable if and only if its Gaussian curvature
vanishes identically.

Remark. The ruled surfaces which are not developable are also called scrolls.

Developable surfaces as envelopes of a one-parameter family of planes. The regres-
sion edge of a developable surface

We saw previously that that there are three classes of developable surfaces, namely:

1. cylindrical surfaces;

2. conical surfaces;

3. surfaces generated by the tangents to a space curve.

We shall see, in this paragraph, that, in fact, these three classes exhaust all the devel-
opable surfaces.

In the figure 5.1.4 we give an example of developable surface with a regression edge
(the tangent developable of the Viviani’s temple). One can notice immediately, from the
very definition of the developable ruled surfaces, that a ruled surface is developable if
and only if it is the envelope of a family of planes, depending on a single parameter1.

We consider a one-parameter family of planes

N(λ) · r + D(λ) = 0. (5.1.15)

1These planes are, of course, the tangent planes of the surface. Clearly, any surface is the envelope of
a family of planes, namely the family of tangent planes to the surface. Nevertheless, this family depends,
usually, on two parameters. In the case of developable surfaces, it depends on a single parameter, namely
the parameter along the directrix of the surface.
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Figure 5.4: The tangent developable of Viviani’s temple

We shall assume, without restricting the generality, that the normal vector N is a versor.
By differentiating the equation (5.1.15) with respect to λ, we obtain

N′(λ) · r + D′(λ) = 0. (5.1.16)

According to the theory of envelopes of the families of surfaces, the equations (5.1.15)
and (5.1.16) determine the envelope of the family of planes, if such an envelope exists2.

The characteristic curves of the family of planes are straight lines, obtained as inter-
sections between the planes of equations (5.1.15) and (5.1.16), respectively. Clearly,
these characteristics exist only if the planes of the family are not parallel, which we
admit to be true in our case.

The points of the envelope have to verify, also, the equation obtained from (5.1.16),
by differentiating once more with respect to λ, i.e.

N′′(λ) · r + D′′(λ) = 0. (5.1.17)

We have, thus, the following system of equations:
N(λ) · r + D(λ) = 0
N′(λ) · r + D′(λ) = 0
N′′(λ) · r + D′′(λ) = 0.

(5.1.18)

2As a matter of fact, these equations describe the discriminant set, including, also, the singular points
of the surfaces from the family. However, in this particular case, the surfaces are planes and they have no
singular points whatsoever.
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We can regard this system as being a system of three equations with three unknowns (the
components of the radius vector r).

Let us assume, to begin with, that the system is compatible and determined, i.e. the
three planes intersect at a single point. We admit, at the first stage, that the solution of
the system depends in a nontrivial manner, on the parameter λ, in other words, if

r = r̃(λ) (5.1.19)

is the solution of the system, then r̃(λ) , 0. This means, in fact, that the equation
(5.1.19) describes a space curve, called the edge of regression of the developable surface.
This is, of course, the edge of regression of the envelope of the family of planes, in the
sense of the theory of envelopes of surfaces. We know from this theory that all the
characteristic curves have to be tangent to the edge of regression. Therefore, we must
have

N · r̃′ = 0 (5.1.20)

ži
N′ · r̃′ = 0, (5.1.21)

because the characteristic is obtained by the intersections of the planes of normal vectors
N and N′, respectively.

By differentiating the relation (5.1.20), we obtain

N′ · r̃′ + N · r̃′′ = 0 (5.1.22)

whence, using (5.1.21),
N · r̃′′ = 0. (5.1.23)

The relations (5.1.20) and (5.1.23) tell us that the plane of the normal vector N contains
both the vector r̃′, and the vector r̃′′, i.e. is nothing but the osculating plane of the
regression edge at the point associated to the value λ of the parameter..

As such, a developable surface admitting an edge of regression can be described in
two different ways:

a) as the surface generated by the tangents to the edge of regression;

b) as the envelope of the family of osculating planes of the edge of regression.

In the degenerate case, when the edge of regression reduces to a point, all the character-
istic curves (i.e. the generators of the surface) are passing through that point, hence the
surface is a conical surface.
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We shall focus now on the case when the system (5.1.18) has a vanishing determi-
nant. In principle, two situations are possible: either the system is compatible and unde-
termined, either it is incompatible. We shall see that the first possibility is, in practice,
excluded.

We notice, first of all, that the determinant of the linear system (5.1.18) is nothing
but (N,N′,N′′), therefore, the condition ∆ = 0 is equivalent to the condition(

N,N′,N′′
)
= 0. (5.1.24)

This means, of course, that the vectors N,N′,N′′ lie in the same plane. We denote by
n = n(λ) the normal versor of this plane, in other words, we have

n · N = n · N′ = n · N′′ = 0. (5.1.25)

By differentiating the first two equations from the previous system, we obtain

n′ · N + n · N′ = n′ · N + n · N′′ = 0,

whence, using (5.1.25),
n′ · N = n′ · N′ = 0,

i.e. either the vector n′ vanishes, either it is perpendicular on the vectors N ži N′.
Assuming that we would be in the second situation, as the vectors N and N′ are not

colinear, we would obtain, as one can see easily, that n′ is parallel to n, which is not
possible since, as, n is a versor, we have n · n′ = 0.

We must have, therefore, n′ = 0, i.e. the vector n is constant. It follows from here
that for any λ the vectors N(λ) and N′(λ) are perpendiculars on the constant vector n,
i.e. all the rulings of the family are parallel to a constant direction, and the surface is a
cylindrical surface. It is easy to see that in this case the system of equations (5.1.18) is
incompatible (the third plane is parallel to the straight line determined by the first two).

The considerations from this paragraph prove that, in fact, we have the following
result::

Proposition 5.1.5. If S is a developable ruled surface, then it is either a cylindrical
surface, either a conical one, either a surface generated by the tangents to a space
curve.

Thus, the classes of surfaces mentioned in the previous paragraph do exhaust all the
types of developable ruled surfaces. We mention that the plane can be considered as a
limit case for any of the three classes of surfaces listed in the proposition.
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5.1.5 Developable surfaces associated to the Frenet frame of a space curve

In all of this section r = r(s) will be a smooth naturally parameterized biregular space
curve. We assume, moreover, that the curve is skew, in other words, its torsion never
vanishes.

The envelope of the family of osculating planes

The equation of osculating planes at a point of the curve is

(R − r(s)) · β(s) = 0. (5.1.26)

The parameter along the family of planes will be exactly the natural parameter s along
the curve.

By differentiating the relation (5.1.26) with respect to s, we get

−r′(s) · β(s) + (R − r(s)) · β′(s) = 0

or, having in mind that r′ · β = 0 and using the third formula of Frenet,

(R − r(s)) · ν(s) = 0, (5.1.27)

where we used the fact that, according to the hypotheses we made about the curve, the
torsion of the curve never vanishes.

From (5.1.26) and (5.1.27) one obtains that the characteristic straight line is perpen-
dicular both on β and on ν, in other words, it is nothing but the tangent to the curve
.

To get the edge of regression, we differentiate once more (5.1.27) and we get

−r′(s) · ν(s) + (R − r(s)) · ν′(s) = 0

or, using the fact that r′(s) · ν(s) = 0,a s well as the second Frenet formula,

(R − r(s)) ·
[
χ(s)β(s) − kν(s)

]
= 0.

As χ(s)β(s) − kν(s) , 0 if χ and k don’t vanish, we obtain that

R = r(s), (5.1.28)

i.e. the edge of regression is nothing but the given curve.
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The envelope of the family of normal planes (the polar surface)

The equation of the normal plane at an arbitrary point of a space curve is, as we know,

(R − r(s)) · τ(s) = 0. (5.1.29)

We differentiate this relation once, to complete the system of equations for the charac-
teristics and we get

−r′(s) · τ(s) + (R − r(s)) · τ′(s) = 0

or, having in mind that we have a curve parameterized by the arc length and using the
first of the Frenet formulae,

−1 + (R − r(s)) · k(s) · ν(s) = 0. (5.1.30)

It follows, then, that

(R − r(s)) · ν(s) =
1

k(s)
. (5.1.31)

The equation (5.1.31) is the equation of a plane which is parallel to the rectifying plane
(because it has as normal vector the versor of the principal normal). Thus, the charac-
teristic of the envelope of the normal planes passing through the point of position vector
r(s) is obtained by intersecting the normal plane to the curve at this point with a plane
which is parallel to the rectifying plane of the curve at the same point, i.e. it is a straight
line which is parallel to the binormal of the curve at the point r(s).

On the other hand, it is clear that this characteristic passes through the point of
position vector r(s)+ 1

k(s) ·ν(s), which is exactly the center of curvature of the curve. Thus,
the characteristics of the family of normal planes are nothing but the axes of curvature
(or polar axes) of the curve. This is the reason why the envelope of the family of normal
planes is called, sometimes, the polar surface of the curve.

To get the edge of regression of the surface, we differentiate once more the relation
(5.1.30) and we get

− r′(s) · k(s) · ν(s)︸              ︷︷              ︸
=0

+ (R − r(s)) · k′(s) · ν(s) + (R − r(s)) · k(s) · ν′(s) = 0

or, using (5.1.31) and the second Frenet formula,

k′(s)
k(s)

+ (R − r(s)) · k(s) ·
[
χ(s) · β(s) − k(s)τ(s)

]
= 0

or, also, from (5.1.29),

(R − r(s)) · β(s) =
k′(s)

k2(s) · χ(s)
. (5.1.32)

Comparing (5.1.29) to (5.1.32), we find out the following things:
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• The straight line of intersection between the planes (5.1.29) and (5.1.32) is parallel
to the osculating plane to the rectifying plane and the normal plane, i.e. is parallel
to the binormal.

• This straight line passes through the point

r(s) +
k′(s)

k2(s) · χ(s)
· β(s).

Thus, the current point from the edge of regression is obtained by intersecting the lines

R(λ) = r(s) +
1

k(s)
· ν(s) + λβ(s) (5.1.33)

and
R(µ) = r(s) +

k′(s)
k2(s)χ(s)

· β(s) + µν(s). (5.1.34)

This point will have, thus, the position vector

R(s) = r(s) +
1

k(s)
· ν(s) +

k′(s)
k2(s)χ(s)

· β(s). (5.1.35)

But the right hand side of the relation (5.1.35) is nothing but the position vector of the
osculating sphere of the given curve. Thus, the edge of regression of the polar surface of
a space curve is the locus of the centers of the osculating spheres of the given curve.

The envelope of the family of rectifying planes of a space curves

The equation of the rectifying plane is

(R − r(s)) · ν(s) = 0. (5.1.36)

By differentiation, we get

− r′(s) · ν(s)︸      ︷︷      ︸
=0

+ (R − r(s)) · ν′(s) = 0

or, using the second Frenet equation,

(R − r(s)) ·
[
χ(s)β(s) − k(s)τ(s)

]
= 0. (5.1.37)

The points of the curve verify the equations (5.1.36) and (5.1.37), hence the curve lies
on the rectifying surface and can be takes as the directrix of the surface, regarded as
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a ruled surface. The relations (5.1.36) and (5.1.37) indicate that the rulings (i.e. the
characteristic lines of the envelope) are perpendicular both on ν, and on ν′, hence their
direction is given by the vector

ν × ν′ = ν × (χβ − kτ) = χ(ν × β) − k(ν × τ) = χτ + kβ = δ,

where δ is the Darboux vector of the curve. Thus, the characteristics of the rectifying
surface of a space curve are the Darboux axes of the curve or the instantaneous axes of
rotation of the Frenet frame.

The tangent plane to the rectifying surface at a point lying on the given curve contain
both the tangent vector of the curve, r′ = τ, and the Darboux vector of the curve, δ.
Therefore, the normal to the surface at such a point is colinear to the vector

τ × δ = τ × (χτ + kβ) = k(τ × β) = −kν.

Thus, the normal to the rectifying surface of a space curve at a point of the curve coin-
cides to the principal normal of the curve. This actually means that the osculating plane
of the curve is perpendicular on the tangent space of the surface, i.e. the curve is a geo-
desic of its rectifying surface. This is, actually, the origin of the name of the rectifying
plane and, implicitly, of the rectifying surface: the curve, when regarded as lying on its
rectifying surface, is a geodesic, which is the surface analogue of a straight line. In other
words, the curve is rectified (straightened) by its rectifying planes.

As we saw, the total of a developable surface is always zero. In many books of
differential geometry it is claimed that the converse is, also, true, in other words, any
surface of zero Gaussian curvature is a developable surface or a part of a developable
surface. However, this is true only if we assume that the surface doesn’t have any planar
points, otherwise, first of all, it might not be not even a ruled surface. An example of such
surface is given in the book of Klingenberg [31]. The surface is not, actually, described
by using a parameterization or an implicit equation, but rather by prescribing the first
two fundamental forms and showing that they fulfill the compatibility conditions.

5.2 Minimal surfaces

5.2.1 Definition and general properties

Definition 5.2.1. A minimal surface is, by definition, a surface whose mean curvature
vanishes identically.

This is not the original definition of a minimal surface. As a matter of fact, Lagrange
extended to the two-dimensional case the method of Euler for finding the extrema of a
functional and he proposed the following problem:
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Given a closed curve and a connected surface patch S bounded by the curve, to finde
the surface such that the inclosed area shall be minimum.

We consider, thus, the area functional,

A =
"
U

Hdudv.

As it is known from the variational calculus, a necessary condition for the minimum of
this functional is furnished by the Lagrange equations, which, in this case, are:

∂H
∂x −

∂
∂u

(
∂H
∂x′u

)
− ∂

∂v

(
∂H
∂x′v

)
= 0

∂H
∂y −

∂
∂u

(
∂H
∂y′u

)
− ∂

∂v

(
∂H
∂y′v

)
= 0

∂H
∂z −

∂
∂u

(
∂H
∂z′u

)
− ∂

∂v

(
∂H
∂z′v

)
= 0

.

After long, but otherwise straightforward computations, the Lagrange equations be-
come 

∣∣∣∣∣∣∣y′u z′u
y′v z′v

∣∣∣∣∣∣∣ Km = 0∣∣∣∣∣∣∣x′u z′u
x′v z′v

∣∣∣∣∣∣∣ Km = 0∣∣∣∣∣∣∣x′u y′u
x′v y′v

∣∣∣∣∣∣∣ Km = 0

,

and, thus, they are satisfied iff Km = 0.
Let us mention, also, that, initially, Lagrange used the explicit representation z =

f (x, y) for the surface, in which case the area functional is"
U

√
1 + p2 + q2dxdy,

while the stationarity condition finally becomes

∂

∂x
p√

1 + p2 + q2
+
∂

∂y
p√

1 + p2 + q2
= 0

or
(1 + q2)r − 2pqs + (1 + p2)t = 0.

It was Meusnier who showed, sixteen years later, that the minimality condition induces
a relation among the coefficients of the first two fundamental forms of a parameterized
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surface. Eisenhart claims that Meusnier actually showed that for minimal surfaces the
mean curvature vanishes. This is not quite correct: Meusnier was not aware of the
true meaning of the the relation he found. In fact, the notion of mean curvature was
introduced only fifty years later, by Sophie Germain.

An alternative proof of the fact that the minimal surfaces are the solution of the
variational problem was found by Darboux. A particularly clear exposition of this proof
can be found in the book of Hsiung.

For further convenience, we shall need the following definition:

Definition 5.2.2. A local parameterization (U, r) of a surface S is called isothermic if,
with respect to this parameterization, the coordinate lines are orthogonal (i.e. F = 0)
and E = G. This means, actually, that the matrix of the first fundamental form is just the
unit matrix multiplied by a positive function.

On any surface which is at least C2 there exist isothermic parameterizations. The
proof of this claim is based on the theory of partial differential equations and it is not
interesting for our exposition.

Proposition 5.2.1. A surface is minimal iff its asymptotic directions are orthogonal.

Proof. A surface is minimal iff the coefficients of the first two fundamental forms verify
the equation

ED′′ − 2FD′ +GD = 0.

Let us choose, for the surface, an isothermic parameterization, with respect to which we
have

E = G = λ2(u, v), F = 0.

Then the minimality condition for the surface becomes

E(D′′ + D) = 0

and, as E , 0, the surface being regular, we have

D′ + D′′ = 0.

On the other hand, the equation for the slopes of the asymptotic directions is

Dt2 + 2D′t + D′′ = 0

and one can see immediately that the asymptotic directions are orthogonal iff the roots
of this equation verify t1t2 = −1, which is equivalent to D = −D′′. �
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The following technical lemma will allow us to obtain a very nice characterization
of minimal surfaces

Lemma 1. Let r = r(u, v) be an isothermic parameterization of a surface S . Then

r
′′

u2 + r
′′

v2 = 2λ2Km n, (5.2.1)

where λ2 = E = G.

Proof. Since r is isothermic, we have

r
′

u
2
= r

′

v
2
= λ2, r

′

u · r
′

v = 0, (5.2.2)

therefore the mean curvature is just

Km =
D + D′′

λ2 . (5.2.3)

By differentiating (5.2.2), we get

r
′′

u2 · r
′

u = r
′′

uv · r
′

v = −r
′

u · r
′′

v2 ,

whence
(r
′′

u2 + r
′′

v2) · r
′

u = 0,

and, similarly,
(r
′′

u2 + r
′′

v2) · r
′

v = 0.

Thus, the vector r′′u2 + r′′v2 is perpendicular both to r′u and r′v, i.e. is colinear with the unit
normal:

r
′′

u2 + r
′′

v2 = a n. (5.2.4)

If we multiply (5.2.4) by n and use the equation (5.2.2), as well as the definition of the
second fundamental form, we obtain

a = D + D′′ = 2λ2Km, (5.2.5)

which proves the claim. �

Corollary 1. if r = r(u, v) is an isothermic parameterization of a surface S , then S is
minimal iff the components of r are harmonical functions, in other words iff we have

∆x = ∆y = ∆z = 0.
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It is a classical (but nontrivial) result that on any smooth (at least C2) surface there
exists isothermic parameterization. On a minimal surface we have a very special isother-
mic parameterization:

Proposition 5.2.2. The lines of curvature on a minimal surface form an isothermic sys-
tem.

Proof. We choose as parametric lines the lines of curvature of the surface. Then, as we
already know, we should have F = D′ = 0 (both first fundamental forms are diagonal in
such a kind of parameterization). Thus, the minimality condition for the surface becomes

ED′′ +GD = 0

In this parameterization the Codazzi-Mainardi equations become

∂D
∂v
−

1
2

(
D
E
+

D′′

G

)
= 0,

∂D′′

∂u
−

1
2

(
D
E
+

D′′

G

)
= 0,

which, for a minimal surface, reduce to

∂D
∂v
= 0,

∂D′′

∂u
= 0,

i.e. D depends only on u and D′′ – only on v. Since

E
D
= −

G
D′′

,

we have
∂2 log E
∂u∂v

=
∂2 log G
∂u∂v

,

which is exactly the condition that the parametric lines are isothermic. �

Proposition 5.2.3. The spherical image of a minimal surface is conformal (i.e. it pre-
serves the angles).
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Proof. Let e, f , g be the coefficients of the first fundamental form of the spherical image.
We have, then,

e = −EKt + DKm, f = −FKt + D′Km, g = −GKt + D′′Km.

Thus, for a minimal surface, we have

e = −EKt, f = −FKt, g = −GKt,

i.e. the two surfaces are, indeed, conformally equivalent. �

The reciprocal of this proposition is almost true, i.e. we have

Proposition 5.2.4. If the spherical map of a surface is conformal, then the surface is
either minimal, either a sphere.

Proof. If the spherical map is conformal, then we have

−EKt + DKm = µE, −FKt + D′Km = µF, −GKt + D′′Km = µG. (5.2.6)

Thus,

DKm = E(Kt + µ), D′Km = F(Kt + µ), D′′Km = G(Kt + µ). (5.2.7)

We multiply the three relations by D′′,−2D′,D, respectively and we add the results, we
get

2KtKm = Km(Kt + µ)

or
Km(µ − Kt) = 0. (5.2.8)

On the other hand, if we multiply the relations (5.2.7) by G,−2F, E, respectively, we get

K2
m = 2(Kt + µ). (5.2.9)

If we put Km, the (5.2.8) is satisfied, while (5.2.9) is satisfied iff µ = −Kt and we redis-
cover the result from the proof of the previous proposition, i.e. the spherical image of a
minimal surface is conformal and the conformal factor is

√
−Kt. The second possibility

to satisfy (5.2.8) is Kt = µ. Notice that, as µ > 0, we cannot have at the same time Kt = µ

and Km = 0, because then we would get, also, Kt = −µ, i.e. Kt = µ = 0.
If Kt = µ, then, from (5.2.9) we get

K2
m = 4µ = 4Kt,

i.e. the principal curvatures are equal at each point (all the points are umbilical). Or, as
we know, the only surface with only umbilical points is the sphere (and its limit case,
the plane). �
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Proposition 5.2.5. The spherical image of isothermic lines on a minimal surface are
isothermic lines on the sphere.

Proof. This is an immediate consequence of the fact that the spherical map of a minimal
surface is conformal. �

The first two minimal surfaces (apart from the plane) were discovered in the eigh-
teenth century by the French mathematician Meusnier. These surface were the catenoid
and the right helicoid. As we know, the first surface is a revolution surface, while the
second is a ruled surface. For a couple of decades, nobody was able to find other ex-
amples. The surfaces found by Meusnier are very simple and they belong classes of
surfaces which are relatively easy to study, but, as we shall see in the following, these
classes do not contain other minimal surfaces.

5.2.2 Minimal surfaces of revolution

Proposition 5.2.6. The catenoid is the only revolution surface which is, also, a minimal
surface.

Proof. An arbitrary surface of revolution (around the z-axis, in our case), can be para-
meterized as 

x = u cos v
y = u sin v
z = f (u)

.

Therefore, the coefficients of the first two fundamental forms of the surface can be writ-
ten as

E = 1 + f ′2, F = 0, G = u2,

D =
f ′′√

1 + f ′2
, ,D′ = 0, D′′ =

u f ′√
1 + f ′2

.

Then the minimality condition for the surface reads

(1 + f ′2)u f ′ + f ′′u2 = 0

which can be integrated and gives for f an expression of the form

f (u) = a cosh−1 u
a
+ c,

where a and c are constants, which corresponds to the catenoid. �
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Figure 5.5: The catenoid

5.2.3 Ruled minimal surfaces

We recall that the right conoid is the surface generated by s straight line moving parallel
to a plane (z = 0 in our case) and intersecting a line which is perpendicular to this plane
(in our case – the z-axis). As we saw, the equations of a right conoid can be written as

x = u cos v
y = u sin v
z = f (v)

.

Then the coefficients of the first two fundamental forms of the surface will be

E = 1, F = 0, G = u2 + f ′2,

D = 0, D′ = −
f ′√

u2 + f ′2
, D′′ =

u f ′′√
u2 + f ′2

.

We are interested to see which right conoids are minimal surfaces. Well, as we will
show, there is only one.

Proposition 5.2.7. The only right conoid which is a minimal surface is the right helicoid.

Proof. As we know, the condition for a surface to be minimal is that the coefficients of
the first two fundamental forms verify the equation

ED′′ − 2FD′ +GD = 0,
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Figure 5.6: The minimal helicoid

which, in our case, reduces to
u f ′′√

u2 + f ′2
= 0,

or f ′′ = 0. But this leads to f (v) = av + b, where a and b are constants, i.e. the surface
is a right helicoid. �

One might think that there are other ruled minimal surfaces, which are not right
conoids. For such more general ruled surfaces we do not have such a nice parameteriza-
tion, therefore this direct approach cannot be applied. Still, as we shall see next, there is
another method to prove that, in fact, there are no other ruled minimal surfaces.

Proposition 5.2.8 (Catalan, 1842). The only minimal ruled surface is the right helicoid.

Proof. Let S be a ruled surface which is not a plane. Then, as we saw previously,
the surface is minimal iff the asymptotic lines are orthogonal. Through each point of
the surface pass exactly two asymptotic lines. On the other hand, through each point
passes one straight line (the generator). To prove that the surface is a right helicoid, it
is enough to prove that it has as directrix a circular cylindrical helix. Since the surface
is minimal, the second asymptotic line through each point is orthogonal to the generator
passing through that point. The asymptotic lines have the property that their principal
normals are contained into the tangent plane. This means that for an asymptotic line
from the second family, the generators that intersect it are principal normals. But they
are principal normals also for any other asymptotic line that intersects them. Thus, any
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asymptotic line from the second family has an infinity of Bertrand mates. But then, as
we know, they have to be cylindrical helices. �

We shall give now, following Barbosa and Colares, a more direct prove of the Cata-
lan’s theorem, using a local parameterization of the ruled surface.

Another proof of the Catalan’s theorem. Let S ⊂ R3 be a ruled surface. Then from the
definition, S has local parameterizations of the form

r(u, v) = α(u) + vγ.

We may choose the directrix α of the ruled surface to be an orthogonal trajectory of the
family of rulings, and γ, the directing vector of the rulings, to be a unit vector, at each
point of the directrix. We shall assume, moreover, that u is the natural parameter of the
directrix. A straightforward computation provides, for the coefficients of the first two
fundamental forms of the surface, the expressions:

E = 1 + 2vα′ · γ′ + v2γ′2,

F = 0,

G = 1,

D =
1√

1 + 2vα′ · γ′ + v2γ′2
(α′ + vγ′,γ,α′′ + vγ′′),

D′ =
1√

1 + 2vα′ · γ′ + v2γ′2
(α′ + vγ′,γ,γ′),

D′′ = 0.

Thus, the minimality condition reads

(α′ + vγ′,γ,α′′ + vγ′′) = 0,

or, which is the same,

(α′ × γ) · α′′ + v
[
(α′ × γ) · γ′′ + (γ′ × γ) · α′′

]
+ v2(γ′ × γ) · γ′′ = 0.

As the left hand side of the previous equation is a polynomial function in v, the equality
holds for any v iff the coefficients of the polynomial function vanish simultaneously:

(α′ × γ) · α′′ = 0 (a)

(α′ × γ) · γ′′ + (γ′ × γ) · α′′ = 0 (b)

(γ′ × γ) · γ′′ = 0. (c)
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From the relation (a) it follows that the vector α′′ must be contained in the plane gener-
ated by the vectors α′ and γ. But, as the curve α is naturally parameterized, the vector
α′ has unit length, which means that α′′ is perpendicular to α′. As, from construction,
γ is also perpendicular to α′, it follows that α′′ is colinear to γ. But the, the relation (b)
reduces to

(α′ × γ) · γ′′ = 0. (b’)

Now, from (b’) and (c) follows that the vector γ′′ should belong to the intersection of the
planes determined by the vectors α′,γ and γ′,γ, respectively. Clearly, this two planes
are not parallel, since they contain at least the vector γ. Therefore, only two situations
are possible: either their intersection is a straight line, either they coincide. Suppose,
first, that there exists a point where γ′′ is not parallel to γ. Then, at this point (and,
by continuity, in an entire neighborhood of it), these planes have to coincide. Indeed,
otherwise γ′′ cannot belong simultaneously to both planes. Moreover, in this situation
we have, also α′ ‖ γ′. Indeed, both γ′ and α′ are perpendicular on γ. As the three
vectors are coplanar, it follows the parallelism just mentioned. Now, as we assumed
that α and γ are not just smooth, but analytic functions, the two vectors are parallel for
any value of the parameter, and, also, the two planes will also coincide. The plane that
contains all our vectors could, in principle, vary from point to point. In reality, instead,
this not happens. Indeed, we have

(γ × α′)′ = γ′ × α′ + γ × α′′ = 0.

But this means that the plane of the vectors is invariant, therefore the curve α is a plane
curve and the surface is a plane.

Suppose, now, that γ′′ is always parallel to γ. If α′ is always parallel to γ′, this
means, actually, that the two planes always coincide and we are, in fact, in the previous
situation. Let us assume, therefore, that there exists a point (hence an entire open set)
where the two vectors are not parallel. We are going to show that, in this case, α is a
circular helix. As we know, to this end it is enough to prove that both the curvature and
the torsion of the curve are constants.

Let {τ, ν,β} the Frenet frame of the curve α. We intend to use the Frenet equation
to find the curvature and the torsion, instead of using the explicit formulas we obtained
when we studied the space curves. First of all, as α is naturally parameterized, we have

α′′(u) = k(u)ν(u).

On the other hand, again, because α is naturally parameterized, we have α′′(u) ⊥ α′(u).
But α′ is also perpendicular on γ, and the three vectors are coplanar, which means that,
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as γ is a unit vector, we have γ′(u) = ±ν, hence, using the previous equation,

±k(u) = α′′(u) · γ(u).

But, since α′ ⊥ γ, we have

0 = (α′ × γ)′ = α′ × γ′ + α′′ × γ,

therefore, we have for the curvature the expression

±k(u) = −α′ × γ′.

Thus, the derivative of the curvature will be given by

±
dk
du
= −(α′ × γ′)′ = −α′′ × γ′ − α′ × γ′′ = 0,

i.e. the curvature of α is constant. The torsion, on the other hand, can be found using the
third Frenet’s formula. Indeed, this formula is

β′ = −χν.

As we saw, ν = ±γ. On the other hand, we have τ = α′ and, thus,

β ≡ τ × ν = ±α′ × γ,

whence
β′ = ±(α′ × γ)′ = ±(α′′ × γ + α′ × γ′) = ±α′ × γ′.

Hence the torsion will be given by

χ = −β · ν = ±(α′ × γ′) · γ

and it is easy to see that the derivative of the torsion is, also, identically zero, i.e. the
torsion is a constant function.

Now, from the existence and uniqueness theorem for space curves, we know that
there exists a curve which has the prescribed curvature and torsion and this curve is
unique, up to a motion in space. But, on the other hand, we know a curve which has
constant curvature and torsion, namely the circular helix. Thus, α should be a circular
helix and has a parameterization of the form

α(u) = (A cos au, A sin au, bu),
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where, since α is supposed to be naturally parameterized, the constants A, a, b are subject
to A2a2 + b2 = 1. On the other hand, as γ is parallel to α′′, we have, also,

γ = ±{cos au, sin au, 0}.

If, now, we put s = A ± u, t = v, the equation of the surface, with α and γ just found,
becomes

r(s, t) = (s cos at, s sin at, bt),

which means that the surface is a part of a right helicoid, as claimed. �

Consequence. The only developable minimal surface is the plane.

As we already mentioned, Meusnier was the one who discovered that the right heli-
coid is a minimal surface. It is both interested and instructive to see how Meusnier got
to this result. He searched a minimal surface in an explicit representation, z = f (x, y).
As we saw, in this case, the minimality condition can be written as

(1 + f ′2y) f ′′x2 − 2 f ′x f ′y f ′′xy + (1 + f ′2x) f ′′y2 = 0.

Meusnier was interested in solutions of the previous equation for which the level curves
f (x, y) = const are straight lines in the plane. Obviously, such surfaces would be ruled.
He started by noticing that, for a plane curve given in the implicit form f (x, y) = c, the
signed curvature can be written as

k± =
− f ′′

x2 f ′2y + 2 f ′x f ′y f ′′xy − f ′′
y2 f ′2x

‖ grad f ‖3
.

Therefore, the minimality condition becomes

∆ f = k±‖ grad f ‖3.

If the level curves are straight lines, then their signed curvature vanishes, which means
that f is a harmonical function, i.e.

∆ f ≡
∂2 f
∂x2 +

∂2 f
∂y2 = 0.

Now, it can be shown that the only solution of this equation for which the level curves
are straight lines is

f (x, y) = a arctg
y − y0

z − z0
+ b,
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with a, b, x0, y0 constants.
The graph of the function z = f (x, y) is, then, either a a plane (if a = 0), either a

portion of the right helicoid 
x = x0 + u cos v
y = y0 + u sin v
z = av + b.

As one can see, even the original deduction of Meusnier could make one suspect that the
only ruled minimal surface is the right helicoid.

5.3 Surfaces of constant curvature

Definition 5.3.1. We say that a surface S has constant curvature if its Gaussian curvature
is independent of the point, i.e. is a constant.

We already met surfaces which have zero curvature, namely the plane and the de-
velopable surfaces. We also know an example of a surface that has constant positive
curvature (the sphere). We shall give, now, an example of a (parameterized) surface
that has constant negative curvature, namely the pseudosphere, given by the parametric
equations 

x = a sin u cos v
y = a sin u sin v
z = a

(
ln tan u

2 + cos u
) . (5.3.1)

A straightforward computation shows that the pseudosphere has the Gaussian curvature
−1/a2. Loosely, we can define a surface to be complete if it is unextendible (like the
sphere, or the plane). It turns out that any surface of constant negative curvature, if
extended enough, becomes singular. In other words, there are no non-singular complete
surfaces of constant negative curvature in R3. The pseudosphere (see the figure 5.3) is
no exception. A classical theorem of Minding (1839) claims that all the surfaces that
have the same constant curvature are locally isometric. This means that they have local
parameterizations, defined on the same domain in the plane, in such a way that, for a
given pair of parameters, they have the same coefficients for the first fundamental form.
This result does not hold, however, if the surfaces don’t have constant curvature, as the
following counterexample shows.

Counterexample. Let r1 : D1 ≡ (0,∞) × (0, 2π)→ R3, given by

r1(u1, v1) = (u1 cos v1, u1 sin v1, ln u1)
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Figure 5.7: The pseudosphere

and r2 : D2 ≡ (0,∞) × (0, 2π)→ R3, given by

r2(u2, v2) = (u2 cos v2, u2 sin v2, v2) .

As one can see, the first surface is a surface of revolution, generated by the graph of
the logarithmic function, while the second one is part of the right helicoid. We consider
the map Λ : D1 → D2, Λ(u1, v1) = (u2, v2). As D1 = D2, clearly Λ is, in fact, the
identity and it is, therefore, a diffeomorphism. An easy computation shows that the first
fundamental forms for the two parameterized surfaces are, respectively:

E1 = 1 +
1
u2

1

, F1 = 0, G1 = u2
1

and
E2 = 1, F2 = 0, G2 = 1 + u2

2,

therefore they are not isometric (because, for instance, E1 , E2). However, as one can
convince oneself, for their Gaussian curvatures we get

K1 = −
1

(1 + u2
1)2

, K2 = −
1

(1 + u2
2)2

,

i.e. they are equal.

On the other hand, even if, for instance, the surfaces of the same constant negative
curvature are locally isometric with the pseudosphere, they might look very different, as
the surfaces from the figure 5.3, belonging to Kuen and Dini show.
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(a) Surface of revolution (b) Helicoid

Figure 5.8: Non-isometric parameterized surfaces

(a) Kuen’s surface (b) Dini’s surface

Figure 5.9: Surfaces of constant negative curvature
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Problems

1. We consider, in the coordinate plane xOz, the curve given byx = f (u),
z = ϕ(u).

Find the parametrical equation of the surface obtained rotating this curve around the
z-axis.

2. Find the equations of the torus, obtained by rotating the circle
x = a + cos u,
y = 0,
z = b sin u, b < a,

around the z-axis.

3. Find the equations of the catenoid, obtained by rotating the catenary
x = a cosh

u
a
,

y = 0,
z = u

around the z-axis.
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4. Find the equations of the pseudosphere, obtained by rotating the tractrix
x = a sin u,
y = 0,
z = a

(
ln tan u

2 + cos u
)

around the z-axis.

5. Find the equation of the tangent plane at an arbitrary point of the right helicoid

r = {u cos v, u sin v, hv}.

6. Show that if a smooth surface Φ and a plane α have a single common point P, then
the plane α is the tangent plane to the surface at the point P.

7. Write the equation of the tangent plane to the sphere of radius a, centred at the origin,
at the point of coordinates (0, 0, a) (“north pole”).

8. Write the equations of the normal to the pseudosphere
x = a sin u cos v,
y = a sin u sin v,
z = a ln tan u

2 + a cos u

at an arbitrary point and find the unit normal vector.

9. Find the unit normal vector to the right helicoid
x = u cos v
y = u sin v
z = hv

.

10. Determine the equation of the tangent plane to the surface xy2 + z2 = 8 at the point
(1, 2, 2) and find the unit normal vector at this point.

11. Show that the surfaces

x2 + y2 + z2 = αx,

x2 + y2 + z2 = βy

and

x2 + y2 + z2 = γz

are pairwise orthogonal to each other.
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12. Show that the normal to a surface of rotation at an arbitrary point passes through the
rotation axis.

13. Show that the tangent plane at an arbitrary point of the surface z = xϕ
(

y
x

)
, where ϕ

is a smooth function of a single real variable, passes through the origin of coordinates.

14. Show that the tangent plane to a surface generated by the tangents to a space curve
is the same at all the points of a given generator.

15. Write the equation of the tangent plane and the equations of the normal at the surface
generated by the binormals of a curve ρ = ρ(s).

16. The surface Φ is generated by the binormals of a curve γ. Show that at the points
of the curve γ the tangent plane to Φ coincide with the osculating plane to γ, while the
normal to the surface is the principal normal to the curve γ.

17. A surface is generated by the principal normals of a curve γ. Establish the equation
of the surface. Show that at the points of the curve γ the tangent plane to the surface
coincide with the osculating plane to the curve γ.

18. On the normals to a surface Φ, in the same direction, there are taken segments
of the same length, measured from the surface. The ends of these segments describe
another surface, Φ∗, “parallel” to the surface Φ. Show that the surfaces Φ and Φ∗ have,
at corresponding points, common normals and parallel tangent planes.

19. Study the variation of the sign of the function r · n for the torus, where r is the
radius vector of a point of the torus, while n is the normal to the torus at that point. Find
the geometrical locus of the points from the torus at which r · n = 0 (the origin of the
coordinates is taken at the centre of the torus).

20. Find a close surface on which the function r · n is a constant.

21. Find the points of the torus

ρ = {(R + r cos u) cos v, (R + r cos u) sin v, r sin u}

at which its normal is parallel to the vector a = {l,m, n}

22. Write the equation of the tangent plane to the torus
x = (3 + 2 cos u) cos v,
y = x = (3 + 2 cos u) sin v,
z = 2 sin u,

parallel to the plane x + y +
√

2z + 5 = 0.
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23. Find the tangent plane to the surface z = x4 − 2xy3, perpendicular to the vector
a = {−2, 6, 1}. Find, also, the tangency point.

24. Find the envelope and the regression edge of the family of spheres of constant radius,
equal to a, with the centers on the circlex2 + y2 = b2,

z = 0.

25. Find the envelope of the family of spheres

x2 + y2 + (z −C)2 = 1.

26. Find the envelope, the characteristics and the regression edge for a family of spheres
of constant radius a, with centers on a given curve ρ = ρ(s) (tubular surface).

27. Find the envelopes and the regression edge for a family of spheres passing through
the origin of the coordinates and with the centers on the curve

x = t3,

y = t2,

z = t.

28. Find the envelope of a family of planes forming with the coordinate solid angle
x > 0, y > 0, z > 0 a triangular pyramid of constant volume V .

29. Find the envelope and the regression edge for the family of normal planes to the
helix 

x = a cos t,
y = a sin t,
z = bt.

30. Find the envelopes, the characteristics and the regression edge for the family of
normal planes to a space curve ρ = ρ(s) (the polar surface of the curve).

31. Find the envelope, the characteristics and the regression edge for the family of rec-
tifying planes of a space curve ρ = ρ(s).

32. Find the envelope, the characteristics and the regression edge of the family of oscu-
lating planes of a space curve ρ = ρ(s).
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33. Find the envelope, the characteristics and the regression edge of the family of planes

(r,n(α)) + D(α) = 0,

where ‖n‖ = 1, ‖n′(α)‖ , 0, ‖n′′(0)‖ , 0.

34. Find the envelope and the characteristics of the family of circular cylinders of con-
stant radius r:

a) (x −C)2 + y2 = r2;

b) x2 + (y −C)2 = r2;

c) (x −C)2 + (y −C)2 = r2.

35. Write the equation of the tangent plane at an arbitrary point of the surface generated
by the tangents to the space curve r = r(s). Study its position when the tangency point
moves along a generators of the surface.

36. Show that the osculating plane to the regression edge of a developable surface coin-
cides with the tangent plane to the surface at that point.

37. Show that the intersection curve between a developable surface and the osculating
plane at its regression edge has, for arbitrary point of this edge, the curvature equal to 3

4
from the curvature of the regression edge at that point.

38. A Catalan surface is a skew ruled surface whose generators are parallel to a given
plane, the directing plane. Show that a ruled surface

r = r1(u) + vb(u)

is a Catalan surface iff
(b,b′,b′′) = 0, b′′ , 0.

39. Find the first fundamental form of the second degree surfaces

1. x2 + y2 + z2 = r2 (the sphere);

2. x2

a2 +
y2

b2 +
z2

c2 = 1 (the ellipsoid);

3. x2

a2 +
y2

b2 −
z2

c2 = 1 (the hyperboloid with one sheet);

4. x2

a2 +
y2

b2 −
z2

c2 = −1 (the hyperboloid with two sheets);
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5. x2

p +
y2

q = 2z (the elliptical paraboloid);

6. x2

p −
y2

q = 2z (the hyperbolical paraboloid);

7. x2

a2 +
y2

b2 −
z2

c2 = 0 (the cone);

8. x2

a2 +
y2

b2 = 1 (the elliptical cylinder);

9. x2

a2 −
y2

b2 = 1 (the hyperbolical cylinder);

10. y2 = 2px (the parabolical cylinder).

40. Specify which of the following quadratic forms can play the role of the first funda-
mental form for a surface:

1. ds2 = du2 + 4dudv + dv2;

2. ds2 = du2 + 4dudv + 4dv2;

3. ds2 = du2 − 4dudv + 6dv2;

4. ds2 = du2 + 4dudv − 2dv2.

41. Find the transformation formulas for the coefficients of the first fundamental form
and of the quantity

H =
√

EG − F2

for a parameters’ change.

42. Show that any revolution surface has a parameterization for which the first funda-
mental form can be written under the form

ds2 = du2 +G(u)dv2.

43. A coordinate net on a surface is called a Tchebysheff net if the segments of coordinate
lines from a family intercepted between two coordinate lines from the other family have
constant length. Show that a coordinate net on a surface is a Tchebysheff net iff E′v =
0,G′u = 0.

44. Find a coordinate transformation such that the first fundamental form of the pseudosphere,

ds2 = a2 ctg2 udu2 + a2 sin2 udv2

becomes
ds2 = du2 +G(u)dv2.
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45. Find the equation of a curve which intersect the meridians of a revolution surface
under a constant angle α (the loxodrom).

46. Find the loxodroms of the sphere.

47. Find the orthogonal trajectories of the rectilinear generators of a conical surface.

48. Find the differential equation of the curve which intersects the rectilinear generators
of a tangent developable under a constant angle α.

49. Find the orthogonal trajectories of the family of curves

u + v = const,

lying on the sphere 
x = R cos u cos v,
y = R cos u sin v,
z = R sin u.

50. On the circular cone 
x = u cos v,
y = u sin v,
z = u,

one considers the family of curves

v = u2 + α,

where α is a parameter. Find the orthogonal trajectories of this family.

51. Find the equations of the curves from the sphere
x = R cos u sin v,
y = R sin u sin v,
z = R cos v

which bissect the angle between the meridians and the parallels.

52. Find the intersection angle between the curves

u + v = 0, u − v = 0



224 Problems

from the right helicoid 
x = u cos v,
y = u sin v,
z = av.

53. Find the perimeter and the interior angles of the curvilinear triangle

u = ±
1
2

av2, v = 1,

from the surface with the first fundamental form

ds2 = du2 + (u2 + a2)dv2.

54. On the surface with the first fundamental form

ds2 = du2 + sinh2 udv2

find the length of the arc of the curve u = v between the points M1(u1, v1) and M2(u2, v2).

55. Find the angle between the curves

v = u + 1 şi v = 3 − u

from the surface 
x = u cos c,
y = u sin v,
z = u2.

56. On a sphere there is given a right angle triangle, whose sides are arcs of great circles
of the sphere. Find:

1. the relation between the sides of the triangle;

2. the area of the triangle.

57. Find the area of the quadrilater from the right helicoid
x = u cos v,
y = u sin v,
z = av.

bounded by the curves
u = 0, u = a, v = 0, v = 1.
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58. Find the second fundamental form of the following surfaces of rotation:

1. x = f (u) cos v, , y = f (u) sin v, z = ϕ(u) – the surface of rotation of rotation axis
Oz;

2. x = R cos u cos v, y = R cos u sin v, z = R sin u – the sphere;

3. x = a cos u cos v, y = a cos u sin v, z = c sin u – the ellipsoid of rotation;

4. x = a cosh u cos v, y = a cosh u sin v, z = c sinh u – the hyperboloid of rotation
with one sheet;

5. x = a sinh u cos v, y = a sinh u sin v, z = c cosh u – the hyperboloid of rotation
with two sheets;

6. x = u cos v, y = u sin v, z = u2 – the paraboloid of rotation;

7. x = R cos v, y = R sin v, z = u – the circular cylinder;

8. x = u cos v, y = u sin v, z = ku – the circular cone;

9. x = (a + b cos u) cos v, (a + b cos u) sin v, z = b sin u – the torus;

10. x = a cosh u
a cos v, y = a cosh u

a sin v, z = u – the catenoid;

11. x = a sin u cos v, y = a sin u sin v, z = a
(
ln tg u

2 + cos u
)

– the pseudosphere.

59. Find the principal curvatures and the principal directions of the right helicoid

x = u cos v, y = u sin v, z = av.

60. Find the principal curvatures at the vertices of the hyperboloid with two sheets

x2

a2 −
y2

b2 −
z2

c2 = 1.

61. Compute the principal curvatures of the surface

x2

p
+

y2

q
= 2z

at the point M(0, 0, 0).
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62. Show that at each point of the surface

x = u cos v, y = u sin v, z = λu

one of the normal principal sections is a straight line.

63. Find the curvatures of the normal sections of the surface y = 1
2 x2:

1. at an arbitrary point and in an arbitrary direction;

2. at the points of the lines obtained by sectioning the surface with planes z = k and
in directions tangents to this curves;

3. at the point M(2, 2, 4), in the direction of the tangent to the curve

y =
1
2

x2, z = x2.

64. On the surface
x = u2 + v2, y = u2 − v2, z = uv

we take the point P(u = 1, v = 1).

1. Compute the principal curvatures of the surface at P.

2. Find the equations of the tangents PT1, PT2 to the principal normal sections at the
indicated point.

3. Find the curvature of the normal section passing through the tangent to the curve
v = u2.

65. We are given the surface

z = 2x2 +
9
2

y2.

1. Find the equation of the Dupin’s indicatrix at the origin of coordinates.

2. Compute, at the origin of coordinate, the curvature radius of the normal section
curve whose angle with the x-axis is 45◦.

66. In the tangent plane at the point M to a surface on draws n straight lines passing
through the origin and intercepting between them angle equal to π

n . Show that

Km =
1
n

(
1
r1
+

1
r2
+ · · · +

1
rn

)
,

where 1
ri

are the normal curvatures of the curves from the surface which are tangent to
the given straight lines, while Km is the mean curvature of the surface at the point M.
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67. Through a point M of an ellipsoid of rotation one draws all the possible curves, lying
on the ellipsoid. Find the geometrical locus of the curvature centers of these curves at
M.

68. Find the surfaces for which the first fundamental form is a perfect square.

69. Through a point M of a surface one considers all the possible plane sections. Find
the equation of the surface which contains the centers of the osculating circles of these
sections.

70. A parabolical cylinder intersects with a plane which is perpendicular to its generators
after a parabola C.Let M be the vertex of this parabola and MT – the tangent to the
parabola at the vertex M. On what curve lie the foci of the parabolas obtained sectioning
the cylinder with planes passing through the straight line MT?

71. Starting from the fact that an ellipse can be projected onto a circle, find the curvature
radius of an ellipse at one of its vertices, using Meusnier’s theorem.
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affine normal, 109
arc length, 19, 20, 42, 57, 59, 88, 89, 99,

149, 198, 224
area, 142–144
astroid, 104–106, 110

lengthened, 80
asymptotic

direction, 150, 151, 154, 202, 208
line, 150–154, 208, 209

Bertrand
curve, 58–62
mate, 58, 59, 62, 209

binormal, 45, 53, 60, 67, 180, 198, 199
biregular curve, 39, 41, 43–46, 49–52,

54, 64, 69, 70, 73, 150, 152,
197

biregular curve , 49
biregular point, 39–41, 62, 66
Bonnet’s theorem, 168

catenary, 100, 109, 217
catenoid, 206, 217, 225
characteristic, 190, 191, 194, 195, 197,

198, 200, 220, 221

Christoffel’s coefficients, 162, 164, 170,
171, 178, 179, 181

circle, 13, 16, 19, 23, 28, 43, 48, 54,
55, 77, 78, 86, 89–93, 96, 101,
103–105, 107–112, 118, 141,
181, 182, 191, 217, 220, 224,
227

clothoid, 99
Codazzi-Mainardi equations, 165, 167,

168, 204
conchoid, 110
conchoid of Nicomede, 104
cone, 154, 222, 223, 225
conformal mapping, 204–206
conoid, 207, 208
contact, 34, 40, 41, 64, 66–68, 109, 125
Cornu’s spiral, 99
curvature, 150

absolute, 85
axis, 67, 198
center, 67, 86, 87, 91, 148, 154, 198,

227
coordinates, 164
curvature, 210
Gaussian, 156, 157, 189, 190, 193,
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200, 213, 214
geodesic, 175, 177–180
line, 156, 158–160, 164, 167, 204
mean, 156, 157, 161, 200, 202, 203,

226
normal, 148–152, 154, 156, 157, 176,

226
of a curve, 42–44, 53–55, 57, 58,

60, 62, 66, 70, 71, 73, 81, 82,
84–86, 95, 97, 99, 111, 148–
152, 162, 210, 211, 221

geometrical meaning, 44
of a plane curve, 81, 82, 96
of a regular curve, 43
principal, 156–158, 161, 205, 225,

226
radius, 43, 67, 91, 97, 99, 109, 226,

227
signed, 54, 75, 82–86, 89, 90, 92,

93, 177, 179, 180, 212
tangential, 177
total, 157, 161, 172–174, 190, 213–

215
vector, 42, 43, 45, 47, 63, 83, 84,

148, 149
curvatures

of a surfaces, 161
cycloid, 104, 105, 109, 110

lengthened, 104
shortened, 104

cycloidal curves, 98
cylinder, 111, 154, 227

circular, 30, 62, 221, 225
elliptical, 222
hyperbolical, 222
parabolical, 222, 227

Darboux axis, 200

Darboux frame, 175, 176
Darboux vector, 53, 200
developable surface, 191–193, 195–197,

200, 212, 213, 221, 223
directrix, 185–187, 192, 193, 199, 208,

209

edge of regression, 190, 191, 193, 195,
197–199, 220, 221

ellipse, 13, 22, 80, 81, 105, 107–110,
227

ellipsoid, 154, 221, 225, 227
elliptic point of a surface, 153, 154, 161
envelope

of plane curves, 75–80, 86, 107, 108,
190

of planes, 193–195, 197–200, 220,
221

of space curves, 191
of surfaces, 190, 191, 194, 195, 220,

221
epicycloid, 105, 109
Euler’s formula, 157
evolute, 79–81, 86, 87, 89, 90, 110

Frenet
axes, 63
equations, 51, 52, 58, 63, 70, 71,

95, 175, 199, 210
formulae, 50, 51, 54, 55, 57, 59–61,

176, 177, 180, 197, 198, 211
frame, 44–52, 64, 66–69, 71, 175,

197, 200, 210
system, 95, 96
vectors, 63, 70

fundamental equations of a surface, 162
fundamental form, 209

first, 139–141, 143, 152, 163, 165,
167, 168, 170–174, 178, 179,
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182, 185, 187–189, 202, 205,
213, 214, 221, 222, 224, 227

second, 146–148, 150–153, 159, 160,
162, 165, 168, 171, 172, 178,
179, 189, 203, 225

fundamental forms, 148, 150, 162, 164,
165, 167, 168, 170, 172, 178,
200–202, 204, 206, 207

fundamental homography, 138
fundamental operator, 137
fundamental theorem of surface theory,

167

Gauss egregium theorem, 172
Gauss equations, 165, 167, 168, 172
geodesic lines, 180
geodesics, 175, 180–183, 200

helicoid, 146, 152, 153, 206–208, 212–
214, 218, 224, 225

helix
circular, 16, 21, 22, 33, 55, 59, 62,

208–211, 220
general, 56–58, 62

hyperbola, 105, 106, 108–110
equilateral, 106, 108, 109

hyperbolic point of a surface, 153, 154,
161

hyperboloid
of rotation with one sheet, 225
of rotation with two sheets, 225
with one sheet, 221
with two sheets, 221, 225

hypocycloid, 105

involute, 86–90, 101, 110
isothermic lines, 204, 206
isothermic parameterization, 202–204
isothermic system, 204

Joachimstahl’s theorem, 158, 159

Klein’s bottle, 130, 132

Liouville surfaces, 182

Möbius band, 128–131
Meusnier’s theorem, 148, 154, 227
minimal surfaces, 200, 202–208, 212,

213, 229, 232
monkey saddle, 155
moving frame, 44, 45

natural basis, 124, 135, 136, 138, 140,
142, 144, 147, 151

natural equations of a curve, 95–101, 110
natural parameter, 19–22, 42, 88, 149,

197, 209
natural parameterization, 21
naturally parameterized curve, 19–21, 42–

44, 46, 51–55, 59, 62–64, 66,
71–73, 84, 86–90, 92, 149, 177,
179, 180, 197, 210, 212

normal line, 32, 34, 35, 37, 39, 45, 80,
105, 107

normal line , 35, 105
normal plane, 32, 34–36, 45, 64, 67, 112,

175
normal section, 148, 154
normal to a plane, 159
normal to a surface, 123, 125, 126, 150,

159, 180, 181, 189, 192
normal to asurface, 126
normal vector, 189
normal versor, 162, 164
normal versor of a plane, 40, 125

orientable surface, 127–130, 137
orientation
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of a curve, 48, 49
of a surface, 127–130, 136–138, 143,

144, 146, 147, 168
oriented curve, 48, 49, 84
oriented surface, 127, 130, 136, 137, 142,

144, 146–153, 156–159, 161
osculating sphere, 68, 199
osculating circle, 91, 92, 108, 109, 227
osculating plane, 39–41, 45, 54, 64, 66–

68, 91, 111, 112, 148, 150, 152,
180, 181, 195, 197, 199, 200,
219–221

osculating sphere, 68
osculation contact, 67

parabola, 64, 106–110, 227
semicubic, 64

parabolic point of a surface, 153, 154,
161

paraboloid
elliptical, 111, 222
hyperbolical, 154, 222
of rotation, 225

polar axis, 67, 104, 198
polar surface, 198, 199, 220
principal direction, 156, 158–160
principal line, 156, 158
principal normal, 45, 47, 58, 59, 62, 112,

152, 198, 200, 208, 219, 226
principal operator, 137
pseudosphere, 213, 214, 218, 222, 225

rectifying
plane, 46, 57, 64, 198–200, 220
surface, 199, 200

Riccati equation, 95, 96
ruled surface, 152, 185–193, 196, 200,

206–209, 212, 213, 221

ruling, 185–189, 191, 192

saddle point of a surface, 154
second curvature (torsion), 51, 53
shape operator, 137–139, 144–147, 156–

159, 161, 162, 164
sphere, 30, 31, 55, 66–68, 110, 111, 116,

118, 126, 127, 136–138, 140,
141, 147, 148, 181, 182, 185,
199, 205, 206, 213, 218, 221,
223–225, 236

spherical map, 136–138, 146, 204–206
superosculation contact, 68
surfaces of constant curvature, 213–215
surfaces of revolution, 117, 159, 182,

206, 214, 222, 223

tangent, 17, 22, 32–36, 38–41, 44, 45,
49, 59, 66, 67, 75, 103, 105,
106, 111, 124, 134, 148–150,
156, 177, 185, 197, 226, 227

tangent developable surface, 223
tangent plane, 67, 123–126, 143, 150,

152, 156, 175, 177, 179–181,
187–189, 192, 193, 200, 208,
218–221, 226

tangent plane , 125, 177, 189, 191
tangent space to a surface, 123, 124, 126,

127, 137, 139, 140, 151, 156,
157

tangent vector, 20, 32, 33, 47, 49, 123,
134, 135, 140, 142, 146, 149–
151, 159, 175, 180, 200

torsion, 50–55, 57, 58, 60, 62, 66, 68,
70, 71, 73, 83, 95, 111, 162,
177, 197, 210, 211, 236

geodesic, 175, 177
torsion, 177
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torus, 118, 119, 154, 191, 217, 219, 225

unit binormal, 45, 54
unit principal normal, 45, 47, 152
unit tangent vector, 45, 84, 85, 95

Weingarten
coefficients, 164
formulae, 164, 165
mapping, 137, 164
operator, 164


